Abstract:
An infrared detector. The detector includes: a superlattice structure including: at least three first layers; and at least three second layers, alternating with the first layers. Each of the first layers includes, as a major component, InAsxP1-x, wherein x is between 0.0% and 99.0%, and each of the second layers includes, as a major component, InAsySb1-y, wherein y is between 0% and 60%.
Abstract:
Methods of fabrication and monolithic integration of a polycrystalline infrared detector structure deposit Group III-V compound semiconductor materials at a low deposition temperature within a range of about 300° C. to about 400° C. directly on an amorphous template. The methods provide wafer-level fabrication of polycrystalline infrared detectors and monolithic integration with a readout integrated circuit wafer for focal plane arrays.
Abstract:
A position sensitive detector includes a substrate, an absorber layer on the substrate, a barrier layer on the absorber layer, a contact layer on the barrier layer, and a first contact and a second contact on the contact layer. The barrier layer prevents a flow of majority carriers from the absorber layer to the contact layer. The position sensitive detector is sensitive to a lateral position between the first contact and the second contact of incident light on the contact layer.
Abstract:
An infrared photo-detector with multiple discrete regions of a first absorber material. These regions may have geometric shapes with sloped sidewalls. The detector also may include a second absorber region comprising a second absorber material that absorbs light of a shorter wavelength than the light absorbed by the multiple discrete absorber regions of the first absorber material. The geometric shapes may extend only through the first absorber material. Alternatively, the geometric shapes may extend partially into the second absorber region. The detector has a metal reflector coupled to the multiple discrete absorber regions. The detector also has a substrate containing the discrete absorber regions and the second absorber region. The substrate can further include geometric shaped features etched into the substrate, with those features formed on the side of the substrate opposite the side containing the discrete absorber regions and the second absorber region.
Abstract:
An infrared photo-detector array and a method for manufacturing it are disclosed. The infrared photo-detector array contains a collector layer, a first absorber layer that absorbs incident light of a first wavelength band and generates first electrons and first holes, a second absorber layer that absorbs incident light of a second wavelength band and generates second electrons and second holes, and wherein the wavelengths of the incident light in the first wavelength band are shorter than the wavelengths of the incident light in the second wavelength band, and wherein the second absorber layer is laterally contiguous across at least two photo-detectors. The method disclosed teaches how to manufacture the infrared photo-detector array.
Abstract:
A phototransistor includes an emitter, a collector, and a base between the emitter and the collector. The base has a thickness greater than 500 nanometers and the base absorbs photons passing through the collector to the base.
Abstract:
An infrared detector and a method for manufacturing it are disclosed. The infrared photo-detector contains a photo absorber layer responsive to infrared light, a first barrier layer disposed on the absorber layer, wherein the first barrier layer substantially comprises AlSb, a second barrier layer disposed on the first barrier layer, wherein the second barrier layer substantially comprises AlxGa1-xSb and a contact layer disposed on the second barrier layer.
Abstract:
A position sensitive detector includes a substrate, an absorber layer on the substrate, a barrier layer on the absorber layer, a contact layer on the barrier layer, and a first contact and a second contact on the contact layer. The barrier layer prevents a flow of majority carriers from the absorber layer to the contact layer. The position sensitive detector is sensitive to a lateral position between the first contact and the second contact of incident light on the contact layer.
Abstract:
An infrared photo-detector array and a method for manufacturing it are disclosed. The infrared photo-detector array contains a plurality of pyramid-shaped structures, a first light-absorbing material supporting the plurality of the pyramid-shaped structure, a carrier-selective electronic barrier supporting the first light-absorbing material, a second light-absorbing material supporting the carrier-selective electronic barrier, and a metal reflector supporting the second light-absorbing material, wherein the plurality of the pyramid shaped structures are disposed on the side of the photo-detector array facing the incident light to be detected and the metal reflector is disposed on the opposite side of the photo-detector array. The method disclosed teaches how to manufacture the infrared photo-detector array.
Abstract:
An infrared photo-detector and a method for manufacturing it are disclosed. The infrared photo-detector contains a collector region, a first absorber layer absorbing a first wavelength band of incident light, wherein the first absorber layer is disposed between the collector region and the incident light, a second absorber layer absorbing a second wavelength band of light, wherein the first absorber layer is disposed between the second absorber layer and the incident light, at least one first electrical contact coupled with the first absorber layer, at least one second electrical contact coupled with the second absorber layer and at least one third electrical contact coupled with the collector, wherein the at least one third electrical contact provides a current associated with absorbed light of the first wavelength band and absorbed light of the second wavelength band. The method disclosed teaches how to manufacture the infrared photo-detector.