Abstract:
A method for detecting the presence and amount of carbon monoxide, comprising the use of infrared spectroscopy to compare the spectra of the test gas containing carbon monoxide and the reference gas. The reference gas is the test gas from which carbon monoxide had been removed by conversion using catalysts. The presence and quantity of carbon monoxide is determined by deducting the spectrum of the reference gas from the spectrum of the test gas. The catalysts comprise nanoparticles of gold precipitated on a metal oxide or hydroxide carrier. An apparatus implementing this method.
Abstract:
A method and sensor for determining the ratio of two components in a fluid mixture comprising a test cell in open communication with the fluid mixture and a reference cell containing a desired fluid mixture not in contact with the fluid mixture being tested, said reference and test cells having the same cell geometry. By use of a capacitance divider system, one determines the relative capacitances of said cells correlated with the dielectric constants of the respective fluid mixtures and ascertains the ratio of one component to the other component in the fluid mixture on the basis of the linear and monotonic correlation between the dielectric constant of the mixture at a given temperature and the ratio of one component to the other component. Preferably a mixture of methanol and water is tested such as for use as a feed to a reformer used in supplying hydrogen to a fuel cell. A fixed capacitor equivalent to the reference cell at a given temperature is usually substituted for the latter.
Abstract:
A microelectromechanical (MEM) switch is fabricated inexpensively by using processing steps which are standard for fabricating multiple metal layer integrated circuits, such as CMOS. The exact steps may be adjusted to be compatible with the process of a particular foundry, resulting in a device which is both low cost and readily integrable with other circuits. The processing steps include making contacts for the MEM switch from metal plugs which are ordinarily used as vias to connect metal layers which are separated by a dielectric layer. Such contact vias are formed on either side of a sacrificial metallization area, and then the interconnect metallization is removed from between the contact vias, leaving them separated. Dielectric surrounding the contacts is etched back so that they protrude toward each other. Thus, when the contacts are moved toward each other by actuating the MEM switch, they connect firmly without obstruction. Tungsten is typically used to form vias in CMOS processes, and it makes an excellent contact material, but other via metals may also be employed as contacts. Interconnect metallization may be employed for other structural and interconnect needs of the MEM switch, and is preferably standard for the foundry and process used. Various metals and dielectric materials may be used to create the switches, but in a preferred embodiment the interconnect metal layers are aluminum and the dielectric material is SiO2, materials which are fully compatible with standard four-layer CMOS fabrication processes.