Abstract:
A solid state electrical device which exhibits the property of having different and sustained states of electrical conductivity and method for making same is disclosed. More particularly, a method is disclosed for fabricating an improved solid state thin film electronic storage medium which can retain by conductivity modulation a high resolution image momentarily impressed thereupon by means of either optical or electron beam inputs for an extended period of time (several tens of seconds) provided that an applied electric field is maintained across the solid state element. This phenomenon is hereinafter referred to as ''''field sustained conductivity.'''' Removal or reversal of the applied electrical field restores the solid state element to its normally insulating condition.
Abstract:
A SOLID STATE ELECTRICAL DEVICE WHICH EXHIBITS THE PROPERTY OF HAVING DIFFERENT AND SUSTAINED STATES OF ELECTRICAL CONDUCTIVITY AND METHOD FOR MAKING SAME IS DISCLOSED. MORE PARTICULARLY, A METHOD IS DISCLOSED FOR FABRICATING AN IMPROVED SOLID STATE THIN FILM ELCTRONIC STORAGE MEDIUM WHICH CAN RETAIN BY CONDUCTIVITY MODULATION A HIGH RESOLUTION IMAGE MOMENTARILY IMPRESSED THEREUPON BY MEANS OF EITHER OPTICAL OR ELECTRON BEAM INPUTS FOR AN EXTENDED PERIOD OF TIME (SEVERAL TENS OF SECONDS) PROVIDED THAT AN APPLIED ELECTRIC FIELD IS MAINTAINED ACROSS THE SOLID STATE ELEMENT. THIS PHENOMENNON IS HEREINAFTER REFERRED TO AS "FIELD SUSTAINED CONDUCTIVITY." REMOVAL OR REVERSAL TO OF THE APPLIED ELECTRICAL FIELD RESTORES THE SOLID STATE ELEMENT TO ITS NORMALLY INSULATING CONDITION.