Abstract:
A method for manufacturing a manifold for a fuel cell with a multilayer structure by injection-molding individual manifolds, each having welding projections and welding guides, and bonding the injection-molded individual manifolds by vibration welding includes arranging welding projections of an upper individual manifold and welding guides of a lower individual manifold to be engaged with each other while maintaining a uniform gap between each other to bond a plurality of individual manifolds in an up and down stacking structure, pressing the lower individual manifold upward, and applying vibration to the upper individual manifold in the left and right direction, thus bonding the upper and lower individual manifolds. Among the welding projections of the upper individual manifold, a non-horizontal welding projection whose longitudinal direction does not coincide with the vibration direction of the individual manifold has a variable height.
Abstract:
An apparatus for preventing moisture condensation includes a fuel cell stack and an enclosure in which the fuel cell stack is disposed. A heater and a temperature sensor are provided in the enclosure. A controller is configured to control the heater to be turned on when an insulation resistance between the fuel cell stack and the enclosure is less than a preset resistance value. The controller controls the heater not to be turned on when a surface temperature of the enclosure measured by the temperature sensor exceeds a preset temperature.
Abstract:
A fuel cell system includes a fuel cell stack including an air electrode and a fuel electrode, a stack housing having a hollow therein to accommodate the fuel cell stack in the hollow, an air compressor configured to pump air to supply the air to the air electrode, a ventilation pipe connecting an entrance of the air compressor and the hollow, and at least one vent hole provided on an outer wall of the stack housing such that the hollow and an outside of the stack housing communicate with each other. An interior of the stack housing is ventilated by lowering of a pressure at the entrance of the air compressor, which is generated as the air compressor is operated, while air outside the stack housing is suctioned into the entrance of the air compressor after passing through the vent hole, the hollow, and the ventilation pipe.
Abstract:
A fuel cell stack enclosure includes: a lower housing disposed under a fuel cell stack and having a bottom plate portion provided with a water outlet therein; a sealing cap closing the water outlet from an outside of the lower housing; and an elastic member elastically pulling the sealing cap toward the bottom plate portion of the lower housing.
Abstract:
An air processing system of a fuel cell vehicle mounted with an integrated valve includes: the integrated valve attached to an air inlet and an air outlet formed integrally with a fuel cell stack and adjusting amounts of air introduced into and discharged from the fuel cell stack. The integrated valve is positioned at the shortest distance from the fuel cell stack, such that an amount of remaining oxygen that is to be consumed at the time of stopping start of a fuel cell vehicle is minimized. Therefore, corrosion of cathode carbon is decreased as compared with the related art, such that durability of the fuel cell vehicle is improved.
Abstract:
A manifold block mounted to a fuel cell stack for supplying and distributing air and hydrogen to the stack, the manifold block comprises: a main body including a hydrogen inlet, a hydrogen outlet, an air inlet and an air outlet; a hydrogen outlet cover welded to an outer surface of the main body and including a condensation chamber connected to the hydrogen outlet; an air inlet cover welded to an inner surface of the main body and including an air inflow portion connected to the air inlet; and an air outlet cover welded to the inner surface of the main body and including an air outflow portion connected to the air outlet.
Abstract:
A humidifier integrated stack includes: unit cells including a fuel electrode and an air electrode; a stack module in which the unit cells are stacked; a manifold block having a predetermined space, an air inlet receiving air to be supplied to the air electrode from the outside, and an air outlet communicating with the predetermined space and discharging the air discharged from the air electrode to the outside; and a humidifying member communicating with the inlet in the space of the manifold block, and guiding the air supplied through the inlet to the air electrode through an internal hollow thereof, wherein the manifold block provides the space that allows the air discharged from the air electrode to supply moisture to the humidifying member while passing through the predetermined space and being discharged to the outlet, so as to humidify the air flowing through the hollow of the humidifying member.
Abstract:
An apparatus for preventing moisture condensation includes a fuel cell stack and an enclosure in which the fuel cell stack is disposed. A heater and a temperature sensor are provided in the enclosure. A controller is configured to control the heater to be turned on when an insulation resistance between the fuel cell stack and the enclosure is less than a preset resistance value. The controller controls the heater not to be turned on when a surface temperature of the enclosure measured by the temperature sensor exceeds a preset temperature.
Abstract:
A manifold block assembly for a fuel cell vehicle mounted on a fuel cell stack and supplying air and hydrogen to the stack, includes a manifold block in which a hydrogen discharge path connected to a hydrogen line formed in the stack, an air discharge path connected to an air line formed in the stack, and a watertight bulkhead are integrally formed with each other. The manifold block assembly further includes a hydrogen inflow pipe configured to be attached to the manifold block and connected to the hydrogen line formed in the stack. The manifold block assembly also includes an air inflow pipe configured to be attached to the manifold block and connected to the air line formed in the stack.
Abstract:
A fuel cell for a vehicle includes seats disposed on a side of a separation plate and having a recessed bottom and inclined sides connecting the edges of the bottom and the separation plate at an angle. Gaskets are projected along the seats on the side of the separation plate. Fastening bars are seated in the seats with the gaskets projected thereon, in the shape of a strip fastening the fuel cell and have a body being in close contact with the bottom and flanges being in close contact with an inclined side.