Abstract:
The present invention relates to specific CSF1R ECD fusion molecules that exhibit improved therapeutic properties. The invention also relates to polypeptide and polynucleotide sequences, vectors, host cells, and compositions comprising or encoding such molecules. The invention also relates to methods of making and using the CSF1R ECD fusion molecules. The invention further relates to methods of treatment using the CSF1R ECD fusion molecules. For example, certain CSF1R ECDs of the invention may be used to treat rheumatoid arthritis (RA) or multiple sclerosis (MS).
Abstract:
The present invention relates to specific CSF1R ECD fusion molecules that exhibit improved therapeutic properties. The invention also relates to polypeptide and polynucleotide sequences, vectors, host cells, and compositions comprising or encoding such molecules. The invention also relates to methods of making and using the CSF1R ECD fusion molecules. The invention further relates to methods of treatment using the CSF1R ECD fusion molecules. For example, certain CSF1R ECDs of the invention may be used to treat rheumatoid arthritis (RA) or multiple sclerosis (MS).
Abstract:
Methods of using colony stimulating factor receptor (CSF1R) extracellular domain (ECD) fusion molecules for treating osteolytic bone loss, cancer metastasis, cancer metastasis-induced osteolytic bone loss, and tumor growth are provided. CSF1R ECD fusion molecules, polynucleotides encoding CSF1R ECD fusion molecules, and methods of making CSF1R ECD fusion molecules are also provided.
Abstract:
Methods of using colony stimulating factor receptor (CSF1R) extracellular domain (ECD) fusion molecules to treat treating osteolytic bone loss, cancer metastasis, cancer metastasis-induced osteolytic bone loss, and tumor growth are provided. CSF1R ECD fusion molecules, polynucleotides encoding CSF1R ECD fusion molecules, and methods of making CSF1R ECD fusion molecules are also provided.
Abstract:
Compositions and methods of therapy for treating diseases mediated by stimulation of CD40 signaling on CD40-expressing cells are provided. The methods comprise administering a therapeutically effective amount of an antagonist anti-CD40 antibody or antigen-binding fragment thereof to a patient in need thereof. The antagonist anti-CD40 antibody or antigen-binding fragment thereof is free of significant agonist activity, but exhibits antagonist activity when the antibody binds a CD40 antigen on a human CD40-expressing cell. Antagonist activity of the anti-CD40 antibody or antigen-binding fragment thereof beneficially inhibits proliferation and/or differentiation of human CD40-expressing cells, such as B cells.
Abstract:
Methods of treating cancers comprising FGFR1 gene amplification are provided. In some embodiments, the methods comprise administering a fibroblast growth factor receptor 1 (FGFR1) extracellular domain (ECD) and/or an FGFR1 ECD fusion molecule. In some embodiments, the methods comprise administering a fibroblast growth factor receptor 1 (FGFR1) extracellular domain (ECD) and/or an FGFR1 ECD fusion molecule in combination with at least one additional therapeutic agent.
Abstract:
Methods of therapy for treating a subject for chronic lymphocytic leukemia are provided. The methods comprise administering a therapeutically effective amount of an antagonist anti-CN40 antibody or antigen-binding fragment thereof to a patient in need thereof. The antagonist anti-CD40 antibody or antigen-binding fragment thereof is free of significant agonist activity, but exhibits antagonist activity when the antibody binds a CD40 antigen on a human CD40-expressing cell. Antagonist activity of the anti-CD40 antibody or antigen-binding fragment thereof beneficially inhibits proliferation and/or differentiation of human CD40-expressing chronic lymphocytic leukemia cells.
Abstract:
Methods and apparatus for merging critical sections are disclosed. An example disclosed system estimates the cost of merging a first critical section and a second critical section using a dataflow analysis on the first and second critical sections. In the example system, the first critical section and the second critical section are merged based on a least expensive cost of merging critical sections.
Abstract:
Compositions and methods of therapy for treating diseases mediated by stimulation of CD40 signaling on CD40-expressing cells are provided. The methods comprise administering a therapeutically effective amount of an antagonist anti-CD40 antibody or antigen-binding fragment thereof to a patient in need thereof. The antagonist anti-CD40 antibody or antigen-binding fragment thereof is free of significant agonist activity, but exhibits antagonist activity when the antibody binds a CD40 antigen on a human CD40-expressing cell. Antagonist activity of the anti-CD40 antibody or antigen-binding fragment thereof beneficially inhibits proliferation and/or differentiation of human CD40-expressing cells, such as B cells.
Abstract:
Methods of treating a human subject for a cancer characterized by neoplastic B cell growth are provided. The methods comprise administering combination antibody therapy to the subject, where an effective amount of an antagonist anti-CD40 antibody or antigen-binding fragment thereof in combination with an anti-CD20 antibody or antigenbinding fragment thereof is administered to the subject. The invention further comprises pharmaceutical compositions with combinations of these antibodies in a pharmaceutically acceptable carrier.