摘要:
A hydrogen storage alloy preferably used for electrodes in an alkaline storage battery is provided. The alloy is of the general formula ZrMn.sub.w V.sub.x M.sub.y Ni.sub.z which comprises C15-type Laves phases having a crystal structure similar to that of MgCu.sub.2 as a main alloy phase, where M is an element selected from the group consisting of Fe and Co; w, x, y, and z are respectively the mole ratios of Mn, V, M and Ni to Zr; the conditions 0.4.ltoreq.w.ltoreq.0.8, 0.1.ltoreq.x.ltoreq.0.3, 0.ltoreq.y.ltoreq.0.2, 1.0.ltoreq.z.ltoreq.1.5 and 2.0.ltoreq.w+x+y+z.ltoreq.2.4 are satisfied.
摘要:
A hydrogen storage alloy electrode comprising a hydrogen storage alloy having a major phase of C15 (MgCu.sub.2) type Laves phase with a composition expressed as ZrMn.sub.w M.sub.x Cr.sub.y Ni.sub.z (where M is one or more elements selected from V and Mo), or its hydride. In this formula, one composition range is 0.6.ltoreq.w.ltoreq.0.8, 0.1.ltoreq.x.ltoreq.0.3, 0
摘要:
The invention relates to a new method of manufacturing a sealed rechargeable alkaline battery including metal oxides as positive electrode active materials and a hydrogen absorbing alloy as a negative electrode material. The basic principle of the method is that, instead of the conventional electrochemical formation, the property of a hydrogen absorbing alloy is utilized to cause the negative electrode to absorb hydrogen to thereby achieve precharged portions within the negative electrode having a relatively larger capacity as compared with the positive electrode. Regardless of the kind of positive electrode, the method of the invention insures a broad freedom in the capacity appropriation between the positive and negative electrodes.
摘要:
The present invention provides a hydrogen storage alloy electrode made of a pentanary or higher multi-component hydrogen storage alloy or a hydride thereof where the alloy comprises at least Zr, Mn, Cr, Ni, and M where M is one or more elements selected from V an Mo, and a major component of the alloy phase is C.sub.15 (MgCu.sub.2) type Laves phase. This hydrogen storage alloy electrode may be enhanced in its performance by subjecting the alloy after the production thereof to a homogenizing heat-treatment at a temperature of 900.degree. to 1300.degree. C. in vacuum or in an inert gaseous atmosphere.
摘要:
A method for producing a hydrogen storage alloy electrode comprising the step of treating a hydrogen storage alloy by immersing it in an alkaline solution containing cobalt ion or copper ion at a high temperature at a stage wherein the alloy is in powder state before formed into an electrode and/or at a stage wherein the alloy has been formed into an electrode. By this treatment, a hydrogen storage alloy electrode having an excellent high-rate discharge performance at a low temperature is obtained.
摘要:
The present invention provides a method of producing a hydrogen storage alloy low in cobalt content which can restrains a decrease in cycle life characteristic and preservation characteristic of an alkaline storage battery when the alloy is used as a negative electrode. The method includes the following steps. An Mm-Ni system hydrogen storage alloy which has a crystal structure of CaCu.sub.5 and contains 15 atom % or less of cobalt is powdered to have an average particle diameter of 10-100 .mu.m. Then, the powdered alloy is immersed in a treatment solution at 80.degree.-130.degree. C., the treatment solution comprising an alkaline aqueous solution containing 10 g/l or more of lithium hydroxide and having a specific gravity of 1.1 or higher, and cobalt ions which is contained in the alkaline aqueous solution, thereby forming a layer containing nickel and cobalt in higher concentration than in the bulk of the powdered alloy onto the alloy surface.
摘要:
In the method of the present invention for producing a hydrogen-storing alloy, part or whole of single substance of Zr as a starting material is replaced with a ferrozirconium or a zircalloy. This method enables production of a hydrogen-storing alloy at reduced material and production costs and with high efficiency and safety of work. The alloy produced by this method has high homogeneity with no segregation. It is thus possible to obtain a hydrogen-storing alloy superior in hydrogen-storing characteristics such as hydrogen storage capacity, reaction speed, and electrode reaction efficiency in an electrolyte. It is also possible to obtain, by using this alloy, a nickel-hydrogen storage battery having a large storage capacity and capable of performing quick charging and discharging, while exhibiting longer life and higher economy.
摘要:
In the method of the present invention for producing a hydrogen-storing alloy, part or whole of single substance of Zr as a starting material is replaced with a ferrozirconium or a zircalloy. This method enables production of a hydrogen-storing alloy at reduced material and production costs and with high efficiency and safety of work. The alloy produced by this method has high homogeneity with no segregation. It is thus possible to obtain a hydrogen-storing alloy superior in hydrogen-storing characteristics such as hydrogen storage capacity, reaction speed, and electrode reaction efficiency in an electrolyte. It is also possible to obtain, by using this alloy, a nickel-hydrogen storage battery having a large storage capacity and capable of performing quick charging and discharging, while exhibiting longer life and higher economy.
摘要:
In the method of the present invention for producing a hydrogen-storing alloy, part or whole of single substance of Zr as a starting material is replaced with a ferrozirconium or a zircalloy. This method enables production of a hydrogen-storing alloy at reduced material and production costs and with high efficiency and safety of work. The alloy produced by this method has high homogeneity with no segregation. It is thus possible to obtain a hydrogen-storing alloy superior in hydrogen-storing characteristics such as hydrogen storage capacity, reaction speed, and electrode reaction efficiency in an electrolyte. It is also possible to obtain, by using this alloy, a nickel-hydrogen storage battery having a large storage capacity and capable of performing quick charging and discharging, while exhibiting longer life and higher economy.
摘要:
A hydrogen gas purification apparatus which includes at least one set of two hydrogen purification containers coupled to each other for heat exchanging therebetween, each of the hydrogen purification containers containing a hydrogen absorbing alloy. The hydrogen gas purification apparatus is so arranged as to cause hydrogen gas to be selectively desorbed from and absorbed into the hydrogen absorbing alloy by the amount of heat produced when the hydrogen gas is selectively absorbed into and desorbed from the hydrogen absorbing alloy.