摘要:
A hydrogen storage alloy preferably used for electrodes in an alkaline storage battery is provided. The alloy is of the general formula ZrMn.sub.w V.sub.x M.sub.y Ni.sub.z which comprises C15-type Laves phases having a crystal structure similar to that of MgCu.sub.2 as a main alloy phase, where M is an element selected from the group consisting of Fe and Co; w, x, y, and z are respectively the mole ratios of Mn, V, M and Ni to Zr; the conditions 0.4.ltoreq.w.ltoreq.0.8, 0.1.ltoreq.x.ltoreq.0.3, 0.ltoreq.y.ltoreq.0.2, 1.0.ltoreq.z.ltoreq.1.5 and 2.0.ltoreq.w+x+y+z.ltoreq.2.4 are satisfied.
摘要:
A hydrogen storage alloy electrode comprising a hydrogen storage alloy having a major phase of C15 (MgCu.sub.2) type Laves phase with a composition expressed as ZrMn.sub.w M.sub.x Cr.sub.y Ni.sub.z (where M is one or more elements selected from V and Mo), or its hydride. In this formula, one composition range is 0.6.ltoreq.w.ltoreq.0.8, 0.1.ltoreq.x.ltoreq.0.3, 0
摘要:
A hydrogen storage alloy preferably used for electrodes in an alkaline storage battery is provided. The alloy is of the general formula ZrMn.sub.w V.sub.x Mo.sub.b M.sub.y Ni.sub.z, wherein M is at least one element selected from the group consisting of Fe and Co and 0.4.ltoreq.w.ltoreq.0.8, 0.ltoreq.x.ltoreq.0.3, 0.05.ltoreq.b.ltoreq.0.2, 0.ltoreq.y.ltoreq.0.2, 1.0.ltoreq.z.ltoreq.1.5, and 2.0.ltoreq.w+x+b+y+z.ltoreq.2.4. The alloy has C15-type Laves phases of a crystal structure similar to that of MgCu.sub.2 as a main alloy phase, and a lattice constant "a" such that 7.05 .ANG..ltoreq.a.ltoreq.7.13 .ANG..
摘要翻译:提供优选用于碱性蓄电池中的电极的储氢合金。 该合金具有通式ZrMnwVxMobMyNiz,其中M是选自Fe和Co中的至少一种元素,0.4≤x≤0.0,0.0≤x≤0.0,0.05。 b = 0.2,0 = y 0.2,1.0 = z 1.5和2.0 w + x + b + y + z = 2.4。 该合金具有类似于MgCu 2作为主合金相的晶体结构的C15型Laves相和晶格常数“a”,使得7.05 ANGSTROM = 7.13 ANGSTROM。
摘要:
In a method for producing a multi-component hydrogen storage alloy including metals of zirconium or vanadium, oxides of these metals is used to produce an alloy having characteristics equivalent to that produced with pure metals. It comprises steps of calcining the raw material, wherein at least one selected from the group consisting of zirconium and vanadium is included in its oxide form, at a temperature ranging from 900.degree. C. to 1300.degree. C., mixing metal calcium with said calcined raw material, and treating the mixture with heat at a temperature ranging from the melting point of metal calcium to 1300.degree. C., under inert gas atmosphere.
摘要:
The present invention provides a hydrogen storing alloy electrode having a large discharging capacity and a long lifetime at a high temperature. The electrode is also excellent in discharging characteristics in the early charging and discharging cycles. In one aspect of the present invention, the hydrogen storing alloy electrode is made of a hydrogen storing alloy represented by the general formula ZrMn.sub.m V.sub.x X.sub.y Ni.sub.z or a hydride thereof, wherein X is Al, Zn or W; m, x, y, and z are respectively mole ratio of Mn, V, X, and Ni to Zr: 0.4.ltoreq.m.ltoreq.0.8, 0.1.ltoreq.x.ltoreq.0.3, 1.0.ltoreq.z.ltoreq.1.5, and 2.0.ltoreq.m+x+y+z.ltoreq.2.4; when X is Al or Zn, 0
摘要翻译:本发明提供一种放电容量大,寿命长的储氢合金电极。 该电极在早期充放电循环中的放电特性也优异。 在本发明的一个方面中,储氢合金电极由通式为ZrMnmVxXyNiz或其氢化物表示的储氢合金制成,其中X为Al,Zn或W; m,x,y和z分别是Mn,V,X和Ni与Zr的摩尔比:0.4≤0.08,0.1≤x≤0.3,0.0≤z /=1.5和2.0 = m + x + y + z <= 2.4; 当X是Al或Zn时,0
摘要:
A hydrogen storage alloy preferably used for electrodes in alkaline rechargeable battery is of the general formula: Zr.sub.1.2-a Ti.sub.a Mn.sub.v Al.sub.w Ni.sub.x M.sub.y Cr.sub.z wherein M represents at least one element selected from the group consisting of Si, Zn, Sn, Fe, Mo, Cu and Co; and wherein 0.1.ltoreq.a
摘要翻译:优选用于碱性可再充电电池中的电极的储氢合金具有以下通式:Zr1.2-aTiaMnvAlwNixMyCrz其中M表示选自Si,Zn,Sn,Fe,Mo,Cu和Co中的至少一种元素; 并且其中0.1≤n≤1.2,0.4≤v≤1.2,0≤w≤0.3,0.8≤x≤1.0,0≤y≤0.2,0.0≤x≤0.2,0≤x≤0.6,0.0≤y≤0.0,0.0,0.0,0.0=0.0 /=z=0.3和1.7 =(v + w + x + y + z)= 2.7。 该合金具有与MgZn2类似的晶体结构的C14型Laves相和与作为主合金相的MgCu 2类似的晶体结构的C15型Laves相中的至少一种。
摘要:
Addition of Mo to a Zr--Mn--V--Cr--Co--Ni, a Zr--Mn--Cr--Co--Ni hydrogen storage alloy, or those including Ti as substitution for Zr improves high-rate discharge characteristics of the hydrogen storage alloy at low temperatures. The hydrogen storage alloy is of the general formula ZrMn.sub.a V.sub.b Mo.sub.c Cr.sub.d Co.sub.e Ni.sub.f, wherein 0.4.ltoreq.a.ltoreq.0.8, 0.ltoreq.b
摘要:
A method for producing a hydrogen storage alloy electrode comprising the step of treating a hydrogen storage alloy by immersing it in an alkaline solution containing cobalt ion or copper ion at a high temperature at a stage wherein the alloy is in powder state before formed into an electrode and/or at a stage wherein the alloy has been formed into an electrode. By this treatment, a hydrogen storage alloy electrode having an excellent high-rate discharge performance at a low temperature is obtained.
摘要:
The present invention provides a method of producing a hydrogen storage alloy low in cobalt content which can restrains a decrease in cycle life characteristic and preservation characteristic of an alkaline storage battery when the alloy is used as a negative electrode. The method includes the following steps. An Mm-Ni system hydrogen storage alloy which has a crystal structure of CaCu.sub.5 and contains 15 atom % or less of cobalt is powdered to have an average particle diameter of 10-100 .mu.m. Then, the powdered alloy is immersed in a treatment solution at 80.degree.-130.degree. C., the treatment solution comprising an alkaline aqueous solution containing 10 g/l or more of lithium hydroxide and having a specific gravity of 1.1 or higher, and cobalt ions which is contained in the alkaline aqueous solution, thereby forming a layer containing nickel and cobalt in higher concentration than in the bulk of the powdered alloy onto the alloy surface.
摘要:
This invention provides a composition comprising a mixture or a fired product of a material of the general formula Sr.sub.(1+x)/2 La.sub.(1-x)/2 Co.sub.1-x Me.sub.x O.sub.3-.delta. (wherein Me: at least one of Fe, Mn, Cr and V; O.ltoreq.x.ltoreq.1; .delta.: loss of oxygen) and SrMeO.sub.3 (wherein Me: at least one of Ti, Zr and and Hf), and a catalyst and a multi-functional sensor using such composition. With this composition it is possible to improve the catalytic performance for cleaning exhaust gas grom combusters or internal combustion engines and to improve sensitivity or response characteristics of the sensors for detecting stoichiometric composition.