摘要:
A precharge circuit is composed of (a) a reference signal input section, to which at least one precharge reference potential is inputted, (b) a control signal input section, to which at least one control signal is inputted, (c) a plurality of signal delay sections for sequentially delaying an output of the control signal input section, and (d) a reference signal switching section for switching, in accordance with outputs of the signal delay sections, between a state of outputting the precharge reference potential of the reference signal input section to each of the data signal lines and a state of non-outputting the same thereto. With this arrangement, the precharge control signal is sequentially delayed within the precharge circuit by the delay circuits composed of inverter circuits or the like, so that timings at which the precharge reference potential is written in the data signal lines are dispersed. By sequentially delaying the control signal within the precharge circuit, reduction of power consumption and excellent image display are realized.
摘要:
A data signal line driving circuit which sequentially forms a plurality of sampling signals and continuously samples input signals to output such input signals, in response to the plurality of sampling signals, wherein the sampling signals respectively represent sampling periods thereof which are different from each other, and a pulse width of each of the sampling signals is prescribed to be small so that rising and falling of each of the sampling signals do not overlap each other.
摘要:
A transistor model for a simulator simulates a resistance between a source region and a drain region with a model equation which has terms representing resistance values corresponding respectively to areas of mutually different impurity concentrations below a gate section in simulating characteristics of a transistor. At least two of the terms each having a threshold parameter indicating a voltage at which a semiconductor element composed of the associated region and regions adjacent to that region changes from an ON state to an OFF state. The threshold parameters of the terms being specified independently from each other. Thus, the characteristics of a transistor having a set of areas of mutually different impurity concentrations below a gate section, inclusive of subthreshold regions which are difficult to evaluate through actual measurement, can be simulated to high accuracy while preserving a good fit with a capacitance model.
摘要:
A transistor model for a simulator simulates a resistance between a source region and a drain region with a model equation which has terms representing resistance values corresponding respectively to areas of mutually different impurity concentrations below a gate section in simulating characteristics of a transistor. At least two of the terms each having a threshold parameter indicating a voltage at which a semiconductor element composed of the associated region and regions adjacent to that region changes from an ON state to an OFF state. The threshold parameters of the terms being specified independently from each other. Thus, the characteristics of a transistor having a set of areas of mutually different impurity concentrations below a gate section, inclusive of subthreshold regions which are difficult to evaluate through actual measurement, can be simulated to high accuracy while preserving a good fit with a capacitance model.
摘要:
A semiconductor device includes a first conductive layer; an interlayer insulative layer having an opening; and a second conductive layer. The first conductive layer, the interlayer insulative layer and the second conductive layer are sequentially laminated. The opening is partially covered by the second conductive layer, and an area of the first conductive layer is substantially entirely covered by the second conductive layer in the opening.
摘要:
A matrix-type image display device of the present invention is arranged such that image data are selectively applied to pixels arranged in a matrix form through scanning signal lines and data signal lines, and the image data are stored therein, wherein a high potential of a sampling pulse 0V/5V to be output from a logic circuit is shifted to 10 V, and a low potential thereof is shifted to −8 V respectively by first and second level shifters. As a result, a difference between an input signal level from an external circuit such as a control circuit, an image signal processing circuit, etc., and an actual driving signal level of each pixel can be absorbed. Therefore, an additional structure such as an interface circuit, etc., is not needed between the external circuit and the scanning signal line driving circuit, thereby enabling a low cost and a low power consumption.
摘要:
An active-matrix image display device which includes n shift registers, analog switches for sampling video input signals and a data-signal-line driving circuit to which n series of clock signals and n.times.m series of video input signals are input, and controls the analog switches according to the result of a logic operation of output pulses from successive l stages in the shift registers. A scanning circuit without using shift registers. Here, n is an integer not smaller than one, m and l are integers not smaller than two. With the image display device, sampling of video signals is surely executed without increasing the number of shift registers. It is thus possible to reduce the size and weight of the image display device and to decrease the defect rate thereof. Moreover, the scanning circuit achieves a higher yield compared with a conventional scanning circuit using a shift register.
摘要:
A matrix-type image display device of the present invention is arranged such that image data are selectively applied to pixels arranged in a matrix form through scanning signal lines and data signal lines, and the image data are stored therein, wherein a high potential of a sampling pulse 0V/5V to be output from a logic circuit is shifted to 10 V, and a low potential thereof is shifted to -8 V respectively by first and second level shifters. As a result, a difference between an input signal level from an external circuit such as a control circuit, an image signal processing circuit, etc., and an actual driving signal level of each pixel can be absorbed. Therefore, an additional structure such as an interface circuit, etc., is not needed between the external circuit and the scanning signal line driving circuit, thereby enabling a low cost and a low power consumption.
摘要:
A driving circuit of a liquid crystal display device including a first insulating substrate on which a plurality of signal lines and a plurality of scan lines are disposed, and pixel transistors made of thin film transistors are disposed in matrix at intersection points of those lines; a second insulating substrate opposite to the first insulating substrate; and a liquid crystal held between the first and second insulating substrates, in which the driving circuit is disposed on the first insulating substrate; each of clock lines or base portions of the clock lines for supplying clock signals to the driving circuit is made of a two-layer structure of the same wiring material as a gate electrode of the thin film transistor and the same wiring material as a source electrode or drain electrode of the thin film transistor; and a wiring line crossing the clock lines or the base portions of the clock lines is made of a wiring line in the same layer as a black matrix covering the pixel transistors.
摘要:
An active matrix type liquid crystal display device carries out half-tone display with an area gray scale display method, according to which a pixel is composed of a plurality of subpixels and the area of display regions is changed by an image signal that is a binary signal. The amplitude of an opposite electrode is optimized by configuring a data signal line driving circuit with a scanning circuit, latch-in circuits and outputting circuits. This eliminates the needs to externally input an analogue signal and an intermediate voltage, and enables the driving circuit to be configured only with digital circuits. The driving circuit is integrated to prevent increases in cost of the driving circuit and of mounting the driving circuit that are caused by an increase in the number of data signal lines as a result of the adoption of the area gray scale display method. Consequently, it becomes possible to make an attempt to reduce the cost, power consumption and non-defective ratio of the entire system.