Abstract:
A distributed antenna system and related methods are provided to reduce interference among wireless mobile devices in a distributed antenna system. A combiner is provided that is configured to be coupled to a plurality of remote transceiver stations deployed in a coverage area and which wirelessly transmit downlink signals to and receive uplink signals from wireless mobile devices. A plurality of input streams that carry uplink signals transmitted by wireless mobile devices are received on individually assigned signal paths from each of the remote transceiver stations. At least one parameter of an input stream received from the one or more of the remote transceiver stations is monitored. A mapping function is determined based on the monitoring. The plurality of input streams are combined based on the mapping function to produce the two or more output streams and the two or more output streams are sent to corresponding receivers in a base station.
Abstract:
A distributed antenna system and related methods are provided to reduce interference among wireless mobile devices in a distributed antenna system. A combiner is provided that is configured to be coupled to a plurality of remote transceiver stations deployed in a coverage area and which wirelessly transmit downlink signals to and receive uplink signals from wireless mobile devices. A plurality of input streams that carry uplink signals transmitted by wireless mobile devices are received on individually assigned signal paths from each of the remote transceiver stations. At least one parameter of an input stream received from the one or more of the remote transceiver stations is monitored. A mapping function is determined based on the monitoring. The plurality of input streams are combined based on the mapping function to produce the two or more output streams and the two or more output streams are sent to corresponding receivers in a base station.
Abstract:
Techniques are provided for a base station to transmit and receive wireless signals via a plurality of remote transceiver stations deployed in a coverage area. The remote transceiver stations are coupled to the base station in order to communicate with wireless mobile devices. A transmission time delay is determined for a message to be transmitted from corresponding remote transceiver stations to a wireless mobile device. Transmission of the message to be wirelessly transmitted from the two or more remote transceiver stations is delayed by a corresponding transmission time delay. The delayed transmissions appear as a resolvable multipath transmission to receivers in the wireless mobile user devices. Techniques are also provided for delaying the processing of uplink transmissions at the base station receiver. Delays associated with downlink or uplink transmissions may also be programmed into individual remote transceiver stations.
Abstract:
A method and apparatus are provided for managing radio access point (RAP) devices and enterprise controller devices in a wireless communication network. An enterprise controller device registers with a gateway device, and the enterprise controller device receives a registration request from multiple RAP devices that are serviced by the enterprise controller device. As the RAP devices register with the enterprise controller device, the enterprise controller device generates a list of the RAP devices registered with the enterprise controller. As the enterprise controller receives additional registration requests from additional RAP devices, the enterprise controller updates the list. The enterprise controller sends the list to the gateway device with which it registers so that the gateway device is aware of RAP devices serviced by the enterprise controller device. In this way, aggregated messages may be sent from the gateway device to the enterprise controller.
Abstract:
A method and apparatus are provided for managing radio access point (RAP) devices and enterprise controller devices in a wireless communication network. An enterprise controller device registers with a gateway device, and the enterprise controller device receives a registration request from multiple RAP devices that are serviced by the enterprise controller device. As the RAP devices register with the enterprise controller device, the enterprise controller device generates a list of the RAP devices registered with the enterprise controller. As the enterprise controller receives additional registration requests from additional RAP devices, the enterprise controller updates the list. The enterprise controller sends the list to the gateway device with which it registers so that the gateway device is aware of RAP devices serviced by the enterprise controller device. In this way, aggregated messages may be sent from the gateway device to the enterprise controller.
Abstract:
Techniques are provided for transmitting and receiving communications on behalf of wireless user equipment devices between a plurality of radio access point (RAP) devices and a gateway apparatus through a controller apparatus. A controller apparatus generates a plurality of first identifiers used for communications on behalf of corresponding wireless user devices between the controller apparatus and respective RAPs. Each first identifier identifies a wireless user device and a RAP to which the wireless user device is associated. The controller apparatus maps each first identifier to a corresponding one of a plurality of second identifiers for communications exchanged on behalf of the wireless user devices between the controller apparatus and a gateway apparatus in the wireless cellular communication network. The controller apparatus remaps a new first identifier to an existing second identifier when a particular wireless user device has handed over from a first RAP to a second RAP.
Abstract:
Techniques are provided for transmitting and receiving communications on behalf of wireless user equipment devices between a plurality of radio access point (RAP) devices and a gateway apparatus through a controller apparatus. A controller apparatus generates a plurality of first identifiers used for communications on behalf of corresponding wireless user devices between the controller apparatus and respective RAPs. Each first identifier identifies a wireless user device and a RAP to which the wireless user device is associated. The controller apparatus maps each first identifier to a corresponding one of a plurality of second identifiers for communications exchanged on behalf of the wireless user devices between the controller apparatus and a gateway apparatus in the wireless cellular communication network. The controller apparatus remaps a new first identifier to an existing second identifier when a particular wireless user device has handed over from a first RAP to a second RAP.
Abstract:
Coordinated transmission of sounding messages between base stations and feeder stations in a wireless backhaul network is provided to facilitate accurate observations by each base station of signals from its serving feeder station and from other feeder stations in order to generate interference nulling beamforming weights for transmission to and/or reception from its serving feeder station. Likewise, these techniques facilitate accurate observations by each feeder station of signals from the base station(s) it serves and from other base stations in order to generate interfering nulling beamforming weights for transmission to and/or reception from the base station(s) it serves.
Abstract:
A calibration-less transmit beamforming apparatus and method are provided. In a wireless communication device that comprises a plurality of antennas, a gain block is provided in the front-end module associated with each antenna and the same gain block is used during transmit and receive operations. As a result, the transmit phase offset and receive phase offset for each antenna are made to be equal, thereby achieving conditions for transmit beamforming without the need for complex antenna calibration algorithms and hardware.
Abstract:
Techniques are provided herein to generate beamforming weight vectors for transmissions to be made from a first wireless communication device, e.g., a base station, to a second wireless communication device, e.g., a client device. The first device has a plurality of antennas and receives uplink transmissions from the second device, each uplink transmission comprising a group of frequency subcarriers. The first device computes channel information from the received uplink transmission and computes one or more trigonometric waveforms determined to approximate the channel information. One or more downlink beamforming weight vectors are computed at any given frequency subcarrier (thus in any frequency subband) by interpolation using the one or more trigonometric waveforms.