摘要:
A differential ranging location system is described which uses a modified time-of-arrival technique to determine the location of a frequency hopped spread spectrum radio signal. The transmitter simultaneously transmits two radio frequency carriers having different frequencies such that a phase difference is observed between the two carriers at a distance from the transmitter. The phase difference is proportional to the range from the transmitter that the carrier signals are observed. The two carrier signals from the single transmitter are received by at least three and in special cases four base stations which calculate the differential time of arrival based on the phase differences of the received carriers. The calculated phase differences are then sent to a central location which locates the position of the transmitter based upon a planer hyperbolic location algorithm. Since a large number of narrow band frequencies across a wide spectrum are used in a frequency hopping transmission protocol, the accuracy in determining the phase differences between the two carriers is increased and the immunity to interference is also increased.
摘要:
A method, apparatus and system is described for distributing accurate time-of-day information from an existing telecommunications infrastructure without modifying the existing infrastructure. In particular, the system comprises a base station device which continually receives extremely accurate time-of-day information from, by way of example and not by limitation, a GPS (Global Positioning Satellite) system, a local atomic dock, or a wired or wireless time standard. The base station periodically places time-of-day information into standard paging packets for transmission over a standard paging network. The paging packets are sent over telephone lines to the paging terminal for transmission whenever a time slot for transmission becomes available. The base station device records the actual time of transmission of the paging packet containing the time of day information and prepares the next time-of-day packet by placing the exact transmission time of the previous time-of-day packet sent. In the receiver, an algorithm is used to extrapolate the current time-of-day based on the history of transmitted packets containing measured time-of-day information of past transmissions.
摘要:
A multi-path resistant frequency-hopped spread spectrum mobile vehicle or personal location system is described which provides low cost manufacture and low power operation while still enabling the accurate location of the mobile unit over long distances and in moderate to severe multi-path conditions. The frequency-hopped spread spectrum mobile vehicle or personal location system consists of a central station, a plurality of base stations and a plurality of mobile transmitters which transmit using a frequency-hopped spread-spectrum differential bi-phase shift keying communication signal. Frequency Shift Keying modulation may also be used. Each of the plurality of base stations include an array of receiving dipole antennas and employs special algorithms for retrieving very low power frequency-hopped spread spectrum signals in a noisy and multi-path environment. The base stations use computational algorithms for determining the phase difference between each of receiving dipole antennas to determine the direction of the transmitter relative to the location of the respective base station. The multiple direction of arrival angles of the received signal at each base station are corrected based on an n-dimensional ambiguity space to locate most probable angles of arrival. The ambiguity space plot is used to eliminate erroneous comparisons of dissimilar phases of the incoming signal. The most probable values are then tracked over multiple frequency hops and a histogram analysis of the strongest surviving angles of arrival is performed. The two peaks of the histogram are used as the two most probable directions of arrival. Each base station then communicates the two relative directions of the transmitter to a central station where the location of the transmitter is determined by triangulation. The direction of arrival angles from the multiple base stations are summed in a least mean square approach to find a single direction of arrival which is then plotted on a gnomonic projection to correct for the curvature of the earth.
摘要:
A special mobile radio mobile, vehicle or personal location system is described where the system operates to locate any one of a the transmitters in an SMR system. The present invention operates by identifying the received signals, removing the modulation information to reconstruct a demodulated carrier and analyzing the carrier signals for multipath distortion. The multipath disruptions are removed to calculate the true incident angle of the transmitted signal at a base station. A plurality of base stations are used to simultaneously calculate the incident angle of the transmitted SMR signal and a central location calculates the most probable location of the transmitter based upon triangulation. The incident angle of the transmitted SMR signal at each base station is performed by calculating the phase differences of the incoming voice signal with phase ambiguity minimized by using a plurality of dipole antennas spaced at an irregular distance to eliminate phase ambiguity error.
摘要:
A modem for symmetric bi-directional transporting of an Ethernet signal, comprises a port connected to a physical layer module adapted to receive and transmit a single Ethernet signal, a data splitter for splitting the Ethernet signal into the configurable number of downstream data signals, and another portion comprising the configurable number of Digital Subscriber Line (DSL) ports coupled to the data splitter. Each port is adapted to transmit a separate downstream signal. Each transmitted downstream signal is transmitted via a corresponding telephone line connected to the port. Each port is further adapted to receive a separate upstream signal. Each received upstream signal is received over the corresponding telephone line connected to the Digital Subscriber Line (DSL) port, and a data collection and reorganization unit coupled to the Digital Subscriber Line (DSL) ports is adapted to assemble the upstream signals into the single Ethernet signal for transmission by the physical layer module.
摘要:
The present invention provides a facility transport system for transporting Ethernet over digital subscnber lines. The system, termed 10BaseS, is capable of transmitting 10 Mbps Ethernet over existing copper infrastructure. The system utilizes carrierless amplitude modulation/phase modulation (CAP), a version of suppressed carrier quadrature amplitude modulation (QAM). The 10BaseS transport facility can deliver symmetrical data at approximately 13 Mbps (net 10 Mbps) over the unscreened, twisted pair telephone wires originally intended for bandwidths between 300 Hz and 3.4 KHz. The system utilizes frequency division multiplexing (FDM) to separate downstream channels from upstream channels. FDM is also used to separate both the downstream and upstream channels from POTS signals. The downstream and upstream data channels are separated in frequency from bands used for POTS and ISDN, enabling service providers to overlay 10BaseS on existing services.
摘要:
A modem for symmetric bi-directional transporting of an Ethernet signal, comprises a port connected to a physical layer module adapted to receive and transmit a single Ethernet signal, a data splitter for splitting the Ethernet signal into the configurable number of downstream data signals, another port comprising the configurable number of DSL ports coupled to the data splitter. Each port is adapted to transmit a separate downstream signal. Each transmitted downstream signal is transmitted via a corresponding telephone line connected to the port. Each port is further adapted to receive a separate upstream signal. Each received upstream signal is received over the corresponding telephone line connected to the DSL port, and a data collection and reorganization unit coupled to the DSL ports and adapted to assemble the upstream signals into the single Ethernet signal for transmission by the physical layer module.
摘要:
Method and modem for fast timing recovery of transmitted data between a master χDSL modem and a slave χDSL modem, over a noisy, high loss, high distortion wiring. Transmitted QAM symbols are received and sampled at the slave modem. The sampled data is split into in-phase and quadrature channel, each of which is filtered by matched filter. The filtered outputs are sampled at twice the symbol rate and the lower and upper band edge components are extracted by modulating each of the sampled sequences of outputs with two discrete time sequences: cos(0.5 π n)=. . . 1,0,−1,0 . . . and sin(0.5 π n)=. . . 0,1,0,−1 . . . . Each of the resulting products is filtered with a first order low-pass filters and re-sampled again at the symbol rate. The Bit Error Rate is computed, and the slave modem switches from blind timing recovery mode, to data directed timing recovery mode, after the Bit Error Rate has sufficiently decreased.
摘要:
A modem for symmetric bi-directional transporting of an Ethernet signal, comprises a port connected to a physical layer module adapted to receive and transmit a single Ethernet signal, a data splitter for splitting the Ethernet signal into the configurable number of downstream data signals, another port comprising the configurable number of DSL ports coupled to the data splitter. Each port is adapted to transmit a separate downstream signal. Each transmitted downstream signal is transmitted via a corresponding telephone line connected to the port. Each port is further adapted to receive a separate upstream signal. Each received upstream signal is received over the corresponding telephone line connected to the DSL port, and a data collection and reorganization unit coupled to the DSL ports and adapted to assemble the upstream signals into the single Ethernet signal for transmission by the physical layer module.
摘要:
A facility transport system for transporting high speed Ethernet data over digital subscriber lines. The system, referred to as 100BaseS, is capable of transmitting 100 Mbps Ethernet over existing copper infrastructure up to distances of approximately 400 meters. The system achieves bit rates from 25 to 100 Mbps in increments of 25 Mbps with each 25 Mbps increment utilizing a separate copper wire pair. Each pair used provides a bidirectional 25 Mbps link with four copper wire pair connections providing 4×25 Mbps downstream channels and 4×25 Mbps upstream channels. The system utilizes framing circuitry to adapt the 100BaseT input data signal to up to four separate output signals. A DSL Ethernet Port card couples the modem to each twisted pair used. Each DSL Ethernet Port card comprises modem transmitter and receiver circuitry for sending and receiving 100BaseS signals onto twisted pair wires. The system utilizes QAM in combination with frequency division multiplexing (FDM) to separate downstream channels from upstream channels and to separate both the downstream and the upstream channels from POTS and ISDN signals.