摘要:
A thermally highly loaded casting is produced. The casting mold is produced from a slurry using a wax model and a polymer foam which is fixed to the wax model or has been introduced into a cavity. In this way, during the casting process the liquid superalloy also penetrates into the open-cell structure of the casting mold, so that an integral cooling structure is formed during the solidification of the casting. A single-crystal or directionally solidified casting is advantageously produced. It is also conceivable to vary the cell size of the polymer foam, to produce a cooling structure and a base material separately, and to coat the cooling structure with a ceramic protective layer (thermal barrier coating).
摘要:
Described is a cooling device for a shroud of a gas turbine blade, having a cooling channel system provided in the shroud, which is provided radially to the gas turbine blade with cooling channels that are open on one side, and which is closed off with a cover plate. The invention is characterized in that, between the cover plate and the cooling channels that are open on one side, an impact cooling plate is provided in such a way that the impact cooling plate rests on the cooling channels that are open on one side, is pressed against them by force, and encloses a space with the cover plate.
摘要:
A cooled gas turbine blade with a shroud in which a cooling channel system is provided, which is closed off radially to the gas turbine blade with a cover plate is characterized in that the cover plate has a circumferential edge, along the entire extension of which the cover plate enters into a continuous shape-mated connection or a plurality of locally limited shape-mated connections with the shroud.
摘要:
A guide blade for steam turbines, having in the blade interior a cavity (18) to which a vacuum is applied, is provided with an opening (3) for drawing off fluid in the region of the trailing blade edge (4). This opening is provided with a porous cover (7). The cover is dimensioned in such a way that, during operation, all its capillaries are filled with the fluid to be drawn off. It is anchored in the guide blade by a mechanical fastening element (20).The mechanical fastening element (20) is a spring-loaded quick-acting lock and comprises a bush (21) which fixes the cover in the blade opening (3) and projects with its cylindrical part (24) into the blade cavity (18), and a pin (25) which is axially displaceable in the interior of the bush, is equipped with spring means (26) and is provided at its end with a cap (28), which rests on the inner wall of the blade.
摘要:
The invention describes a device for separating dust and dirt out of flowing media. A curved flow path (1) is imposed on the flow (21), and heavy foreign bodies are separated out of the main flow by centrifugal force. The partial stream required to carry away the foreign bodies is aftertreated in a filter (11) and returned in purified form. Unlike with conventional filters, which have to process the entire flow of media, pressure losses during the separation of dust are minimized, and on the other hand no medium is lost for removing the dust load.
摘要:
A base material (2) with a cooling air hole (1) is disclosed, means being present which prevent particles (5), which are located in the cooling air (4) which flows through the cooling air hole (1) during the operation of the cooling air hole (1), from closing the cooling air hole (1). In this arrangement, the means can consist in the edge of the cooling air hole (1) being uneven or having a ridge (3) or the cooling air hole (1) being star-shaped, ellipsoidal or linear or the cooling air hole (1) being circular and having lateral slots (7).
摘要:
The process according to the invention discloses production of a high-quality insulation for conductors or conductor bundles. In this process, internal corona-discharge protection, insulation and external corona-discharge protection are all applied to the conductor or conductor bundle in successive steps by means of thermal spraying. The application thickness per spraying run is up to 0.2 mm, thus ensuring that the layer is free of defects and therefore avoiding partial discharges. Moreover, the ability to withstand thermal loads is considerably improved by the use of high-temperature plastics with fillers comprising inorganic materials as coating powder.
摘要:
The invention discloses a process for treating a ceramic protective layer (3) which is applied to the surface (2) of a gas turbine part (1). The roughness of the ceramic protective layer (3) is reduced at at least one first location (5), and the original roughness is retained at at least one second location (6). The roughness is advantageously retained at locations (6) on a turbine blade or vane (1) which are at risk of detachment, while the roughness of the remaining surface (2) is reduced in order to reduce the heat transfer to the surrounding hot-gas flow.
摘要:
In a process for applying a metallic adhesion layer for thermally sprayed ceramic thermal barrier coatings to metallic components, the surface which is to be coated being cleaned in a first process step, so that the metallic surface is free of grease and oxide, a binder is applied to the metallic surface of the base material in a second process step. Metallic adhesive powder is applied uniformly to the binder in a third process step and solder powder, which has a smaller particle size than the adhesive powder, is applied uniformly to the binder in a fourth process step. After drying the binder, a heat treatment is carried out for the purpose of soldering. The adhesion layers produced in this way are rough and provide a considerable positive lock for the ceramic thermal barrier coatings which are to be sprayed thereon.
摘要:
The invention describes a device for separating dust and dirt out of flowing media. A curved flow path (1) is imposed on the flow (21), and heavy foreign bodies are separated out of the main flow by centrifugal force. The partial stream required to carry away the foreign bodies is aftertreated in a filter (11) and returned in purified form. Unlike with conventional filters, which have to process the entire flow of media, pressure losses during the separation of dust are minimized, and on the other hand no medium is lost for removing the dust load.