Controlling a Target System
    1.
    发明申请
    Controlling a Target System 审中-公开
    控制目标系统

    公开(公告)号:US20150370227A1

    公开(公告)日:2015-12-24

    申请号:US14309641

    申请日:2014-06-19

    IPC分类号: G05B13/02

    CPC分类号: G05B13/027

    摘要: For controlling a target system, such as a gas or wind turbine or another technical system, a pool of control policies is used. The pool of control policies including a plurality of control policies and weights for weighting each control policy of the plurality of control policies are received. The plurality of control policies is weighted by the weights to provide a weighted aggregated control policy. The target system is controlled using the weighted aggregated control policy, and performance data relating to a performance of the controlled target system is received. The weights are adjusted based on the received performance data to improve the performance of the controlled target system. The plurality of control policies is reweighted by the adjusted weights to adjust the weighted aggregated control policy.

    摘要翻译: 为了控制诸如气体或风力涡轮机或其他技术系统的目标系统,使用一组控制策略。 接收包括用于对多个控制策略的每个控制策略加权的多个控制策略和权重的控制策略池。 多个控制策略由权重加权以提供加权聚合控制策略。 使用加权聚合控制策略控制目标系统,并且接收与受控对象系统的性能相关的性能数据。 基于所接收的性能数据来调整权重以改善受控目标系统的性能。 多个控制政策通过调整权重重新加权,以调整加权汇总控制策略。

    METHOD FOR THE COMPUTER-AIDED CONTROL OF A TECHNICAL SYSTEM
    2.
    发明申请
    METHOD FOR THE COMPUTER-AIDED CONTROL OF A TECHNICAL SYSTEM 审中-公开
    一种技术系统的计算机辅助控制方法

    公开(公告)号:US20130013543A1

    公开(公告)日:2013-01-10

    申请号:US13583057

    申请日:2011-02-15

    IPC分类号: G06N3/08

    CPC分类号: G05B13/027

    摘要: A method for the computer-aided control of a technical system is provided. A recurrent neuronal network is used for modeling the dynamic behaviour of the technical system, the input layer of which contains states of the technical system and actions carried out on the technical system, which are supplied to a recurrent hidden layer. The output layer of the recurrent neuronal network is represented by an evaluation signal which reproduces the dynamics of technical system. The hidden states generated using the recurrent neural network are used to control the technical system on the basis of a learning and/or optimization method.

    摘要翻译: 提供了一种用于技术系统的计算机辅助控制的方法。 复发神经元网络用于对技术系统的动态行为进行建模,其技术系统的输入层包含技术系统的状态和在技术系统上执行的动作,并提供给复发隐藏层。 复发神经元网络的输出层由再现动态技术系统的评估信号表示。 使用循环神经网络产生的隐藏状态用于在学习和/或优化方法的基础上控制技术系统。

    Method for the computer-assisted modeling of a technical system
    3.
    发明授权
    Method for the computer-assisted modeling of a technical system 有权
    技术系统的计算机辅助建模方法

    公开(公告)号:US09489619B2

    公开(公告)日:2016-11-08

    申请号:US13992799

    申请日:2011-11-16

    IPC分类号: G06F15/18 G06N3/08 G06N3/04

    CPC分类号: G06N3/08 G06N3/0445

    摘要: A method for computer-assisted modeling of a technical system is disclosed. At multiple different operating points, the technical system is described by a first state vector with first state variable(s) and by a second state vector with second state variable(s). A neural network comprising a special form of a feed-forward network is used for the computer-assisted modeling of said system. The feed-forward network includes at least one bridging connector that connects a neural layer with an output layer, thereby bridging at least one hidden layer, which allows the training of networks with multiple hidden layers in a simple manner with known learning methods, e.g., the gradient descent method. The method may be used for modeling a gas turbine system, in which a neural network trained using the method may be used to estimate or predict nitrogen oxide or carbon monoxide emissions or parameters relating to combustion chamber vibrations.

    摘要翻译: 公开了一种技术系统的计算机辅助建模方法。 在多个不同的操作点,技术系统由具有第一状态变量的第一状态向量和具有第二状态变量的第二状态向量描述。 包括前馈网络的特殊形式的神经网络用于所述系统的计算机辅助建模。 前馈网络包括至少一个桥接连接器,其将神经层与输出层相连,从而桥接至少一个隐藏层,这允许以已知的学习方法以简单的方式训练具有多个隐藏层的网络,例如, 梯度下降法。 该方法可以用于对燃气轮机系统进行建模,其中使用该方法训练的神经网络可以用于估计或预测氮氧化物或一氧化碳排放物或与燃烧室振动相关的参数。

    Method For The Computer-Assisted Modeling Of A Technical System
    4.
    发明申请
    Method For The Computer-Assisted Modeling Of A Technical System 有权
    计算机辅助建模技术系统的方法

    公开(公告)号:US20130282635A1

    公开(公告)日:2013-10-24

    申请号:US13992799

    申请日:2011-11-16

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08 G06N3/0445

    摘要: A method for computer-assisted modeling of a technical system is disclosed. At multiple different operating points, the technical system is described by a first state vector with first state variable(s) and by a second state vector with second state variable(s). A neural network comprising a special form of a feed-forward network is used for the computer-assisted modeling of said system. The feed-forward network includes at least one bridging connector that connects a neural layer with an output layer, thereby bridging at least one hidden layer, which allows the training of networks with multiple hidden layers in a simple manner with known learning methods, e.g., the gradient descent method. The method may be used for modeling a gas turbine system, in which a neural network trained using the method may be used to estimate or predict nitrogen oxide or carbon monoxide emissions or parameters relating to combustion chamber vibrations.

    摘要翻译: 公开了一种技术系统的计算机辅助建模方法。 在多个不同的操作点,技术系统由具有第一状态变量的第一状态向量和具有第二状态变量的第二状态向量描述。 包括前馈网络的特殊形式的神经网络用于所述系统的计算机辅助建模。 前馈网络包括至少一个桥接连接器,其将神经层与输出层相连,从而桥接至少一个隐藏层,这允许以已知的学习方法以简单的方式训练具有多个隐藏层的网络,例如, 梯度下降法。 该方法可以用于对燃气轮机系统进行建模,其中使用该方法训练的神经网络可以用于估计或预测氮氧化物或一氧化碳排放物或与燃烧室振动相关的参数。

    Method for the computer-supported generation of a data-driven model of a technical system, in particular of a gas turbine or wind turbine
    5.
    发明授权
    Method for the computer-supported generation of a data-driven model of a technical system, in particular of a gas turbine or wind turbine 有权
    计算机支持生成技术系统,特别是燃气轮机或风力涡轮机的数据驱动模型的方法

    公开(公告)号:US09466032B2

    公开(公告)日:2016-10-11

    申请号:US14123401

    申请日:2012-06-01

    摘要: A method for the computer-supported generation of a data-driven model of a technical system, in particular of a gas turbine or wind turbine, based on training data is disclosed. The data-driven model is preferably learned in regions of training data having a low data density. According to the invention, it is thus ensured that the data-driven model is generated for information-relevant regions of the training data. The data-driven model generated is used in a particularly preferred embodiment for calculating a suitable control and/or regulation model or monitoring model for the technical system. By determining optimization criteria, such as low pollutant emissions or low combustion dynamics of a gas turbine, the service life of the technical system in operation can be extended. The data model generated by the method according to the invention can furthermore be determined quickly and using low computing resources, since not all training data is used for learning the data-driven model.

    摘要翻译: 公开了一种基于训练数据计算机支持生成技术系统,特别是燃气轮机或风力涡轮机的数据驱动模型的方法。 优选地,在具有低数据密度的训练数据的区域中学习数据驱动模型。 根据本发明,确保为训练数据的信息相关区域生成数据驱动模型。 在特别优选的实施例中使用产生的数据驱动模型来计算技术系统的合适的控制和/或调节模型或监控模型。 通过确定燃气轮机低污染物排放或低燃烧动力学等优化标准,可以延长运行中的技术系统的使用寿命。 由于不是所有的训练数据都用于学习数据驱动的模型,因此可以快速确定根据本发明的方法生成的数据模型并使用低计算资源。

    Controlling a Target System
    6.
    发明申请
    Controlling a Target System 审中-公开
    控制目标系统

    公开(公告)号:US20150301510A1

    公开(公告)日:2015-10-22

    申请号:US14258740

    申请日:2014-04-22

    IPC分类号: G05B15/02 G06N3/08

    CPC分类号: G06N3/08 G05B13/027

    摘要: For controlling a target system, operational data of a plurality of source systems are used. The data of the source systems are received and are distinguished by source system specific identifiers. By a neural network, a neural model is trained on the basis of the received operational data of the source systems taking into account the source system specific identifiers, where a first neural model component is trained on properties shared by the source systems and a second neural model component is trained on properties varying between the source systems. After receiving operational data of the target system, the trained neural model is further trained on the basis of the operational data of the target system, where a further training of the second neural model component is given preference over a further training of the first neural model component. The target system is controlled by the further trained neural network.

    摘要翻译: 为了控制目标系统,使用多个源系统的操作数据。 源系统的数据被接收并由源系统特定标识符区分。 通过神经网络,在考虑到源系统特定标识符的基础上,基于接收到的源系统的操作数据来训练神经模型,其中第一神经模型分量被训练在源系统共享的属性上,第二神经模型 对源代码系统之间的属性进行训练。 在接收目标系统的操作数据之后,基于目标系统的操作数据进一步训练经过训练的神经模型,其中第二神经模型组件的进一步训练优先于第一神经模型的进一步训练 零件。 目标系统由进一步训练的神经网络控制。

    METHOD FOR THE COMPUTER-SUPPORTED GENERATION OF A DATA-DRIVEN MODEL OF A TECHNICAL SYSTEM, IN PARTICULAR OF A GAS TURBINE OR WIND TURBINE
    7.
    发明申请
    METHOD FOR THE COMPUTER-SUPPORTED GENERATION OF A DATA-DRIVEN MODEL OF A TECHNICAL SYSTEM, IN PARTICULAR OF A GAS TURBINE OR WIND TURBINE 有权
    用于计算机支持生成技术系统的数据驱动模型的方法,特别是气体涡轮机或风力涡轮机

    公开(公告)号:US20140100703A1

    公开(公告)日:2014-04-10

    申请号:US14123401

    申请日:2012-06-01

    IPC分类号: G06N99/00 G05B13/04

    摘要: A method for the computer-supported generation of a data-driven model of a technical system, in particular of a gas turbine or wind turbine, based on training data is disclosed. The data-driven model is preferably learned in regions of training data having a low data density. According to the invention, it is thus ensured that the data-driven model is generated for information-relevant regions of the training data. The data-driven model generated is used in a particularly preferred embodiment for calculating a suitable control and/or regulation model or monitoring model for the technical system. By determining optimization criteria, such as low pollutant emissions or low combustion dynamics of a gas turbine, the service life of the technical system in operation can be extended. The data model generated by the method according to the invention can furthermore be determined quickly and using low computing resources, since not all training data is used for learning the data-driven model.

    摘要翻译: 公开了一种基于训练数据计算机支持生成技术系统,特别是燃气轮机或风力涡轮机的数据驱动模型的方法。 优选地,在具有低数据密度的训练数据的区域中学习数据驱动模型。 根据本发明,确保为训练数据的信息相关区域生成数据驱动模型。 在特别优选的实施例中使用产生的数据驱动模型来计算技术系统的合适的控制和/或调节模型或监控模型。 通过确定燃气轮机低污染物排放或低燃烧动力学等优化标准,可以延长运行中的技术系统的使用寿命。 由于不是所有的训练数据都用于学习数据驱动的模型,因此可以快速确定根据本发明的方法生成的数据模型并使用低计算资源。

    Method for the computer-assisted learning of a control and/or a feedback control of a technical system using a modified quality function and a covariance matrix
    8.
    发明授权
    Method for the computer-assisted learning of a control and/or a feedback control of a technical system using a modified quality function and a covariance matrix 有权
    使用修改的质量函数和协方差矩阵的计算机辅助学习控制和/或技术系统的反馈控制的方法

    公开(公告)号:US08380646B2

    公开(公告)日:2013-02-19

    申请号:US12875159

    申请日:2010-09-03

    IPC分类号: G06F15/18

    CPC分类号: G05B13/0265

    摘要: A method of computer-assisted learning of control and/or feedback control of a technical system is provided. A statistical uncertainty of training data used during learning is suitably taken into account when learning control of the technical system. The statistical uncertainty of a quality function, which models an optimal operation of the technical system, is determined by uncertainty propagation and is incorporated during learning of an action-selecting rule. The uncertainty propagation uses a covariance matrix in which non-diagonal elements are ignored. The method can be used for learning control or feedback control of any desired technical systems. In a variant, the method is used for control or feedback control of an operation of a gas turbine. In another variant, the method is used for control or feedback control of a wind power plant.

    摘要翻译: 提供了一种计算机辅助学习技术系统的控制和/或反馈控制的方法。 在学习技术系统的控制时,适当考虑到在学习期间使用的训练数据的统计学不确定性。 质量函数的统计不确定性,其对技术系统的最佳操作进行建模,由不确定性传播确定,并且在学习动作选择规则期间被并入。 不确定度传播使用协方差矩阵,其中非对角线元素被忽略。 该方法可用于任何所需技术系统的学习控制或反馈控制。 在一个变型中,该方法用于燃气轮机的操作的控制或反馈控制。 在另一个变型中,该方法用于风力发电厂的控制或反馈控制。

    Method for the computer-assisted control and/or regulation of a technical system
    9.
    发明申请
    Method for the computer-assisted control and/or regulation of a technical system 失效
    计算机辅助控制和/或调节技术系统的方法

    公开(公告)号:US20100094788A1

    公开(公告)日:2010-04-15

    申请号:US12522040

    申请日:2007-12-19

    IPC分类号: G06N3/08 G05B13/04

    摘要: A method for the computer-assisted control and/or regulation of a technical system is provided. The method includes two steps, namely learning the dynamics of a technical system using historical data based on a recurrent neuronal network, and the subsequent learning of an optimum regulation by coupling the recurrent neuronal network to another neuronal network. The method can be used with any technical system in order to control the system in an optimum computer-assisted manner. For example, the method can be used in the control of a gas turbine.

    摘要翻译: 提供了一种用于计算机辅助控制和/或调节技术系统的方法。 该方法包括两个步骤,即使用基于复发性神经元网络的历史数据来学习技术系统的动力学,以及随后通过将复发性神经元网络耦合到另一神经元网络来学习最佳调节。 该方法可以与任何技术系统一起使用,以便以最佳的计算机辅助方式控制系统。 例如,该方法可用于燃气轮机的控制。

    Method for the computer-aided learning of a control or adjustment of a technical system
    10.
    发明申请
    Method for the computer-aided learning of a control or adjustment of a technical system 有权
    计算机辅助学习控制或调整技术系统的方法

    公开(公告)号:US20090271340A1

    公开(公告)日:2009-10-29

    申请号:US12386638

    申请日:2009-04-21

    IPC分类号: G06F15/18 G06N5/02 G06N7/02

    CPC分类号: G05B13/0265

    摘要: A method for the computer-aided learning of a control of a technical system is provided. An operation of the technical system is characterized by states which the technical system can assume during operation. Actions are executed during the operation and convert a relevant state into a subsequent state. The method is characterized in that, when learning the control, suitable consideration is given to the statistical uncertainty of the training data. This is achieved in that the statistical uncertainty of a quality function which models an optimal operation of the technical system is specified by an uncertainty propagation and is incorporated into an action selection rule when learning. By a correspondingly selectable certainty parameter, the learning method can be adapted to different application scenarios which vary in statistical requirements. The method can be used for learning the control of an operation of a turbine, in particular a gas turbine.

    摘要翻译: 提供了一种用于技术系统的控制的计算机辅助学习的方法。 技术系统的操作的特点是技术系统在运行期间可以承担的状态。 在操作期间执行动作,并将相关状态转换为后续状态。 该方法的特征在于,当学习控制时,适当考虑训练数据的统计不确定性。 这是通过不确定性传播来规定对技术系统的最佳操作建模的质量函数的统计不确定性来实现的,并且在学习时被并入动作选择规则中。 通过相应可选择的确定性参数,学习方法可以适应于在统计需求中不同的不同应用场景。 该方法可以用于学习对涡轮机,特别是燃气轮机的操作的控制。