摘要:
The invention relates to a method 20 in a base station 2 for determining a transmission rank. The base station 2 controls two or more transmit antenna ports 3a, 3b for supporting a multi-antenna transmission mode and for transmission of data on a channel for communication with a user equipment 4. The method 20 comprises receiving 21 a rank indicator from a user equipment 4, the rank indicator indicating the number of spatial multiplexing layers recommended by the user equipment 4, and determining 22 the transmission rank based on a channel imbalance factor CIF, wherein the channel imbalance factor CIF quantifies a difference in receive power of the two or more transmit antenna ports 3a, 3b. The invention also relates to a base station, methods in user equipment, user equipment, computer programs, and computer program products.
摘要:
The present invention discloses a network node (100) for multi-user scheduling involving retransmission. The network node comprises a receiver (110) adapted to receive channel quality indicator (CQI) report from a user equipment (UE), an adjuster (120) adapted to adjust signal to interference and noise ratio (SINR) derived from the CQI report to obtain SINR for retransmission, a combiner (130) adapted to combine SINR for initial transmission and SINR for one or a plurality of retransmission to obtain effective SINR, and a scheduler (140) adapted to perform multi-user scheduling on the basis of priority metric derived from the effective SINR. The present invention improves multi-user scheduling by taking HARQ combining gain into account. Instantaneous throughput as well as priority metric can be accurately measured, because SINR from not only channel quality (e.g. CQI) but also HARQ processing gain are both included.
摘要:
The invention relates to a method 20 in a base station 2 for determining a transmission rank. The base station 2 controls two or more transmit antenna ports 3a, 3b for supporting a multi-antenna transmission mode and for transmission of data on a channel for communication with a user equipment 4. The method 20 comprises receiving 21 a rank indicator from a user equipment 4, the rank indicator indicating the number of spatial multiplexing layers recommended by the user equipment 4, and determining 22 the transmission rank based on a channel imbalance factor CIF, wherein the channel imbalance factor CIF quantifies a difference in receive power of the two or more transmit antenna ports 3a, 3b. The invention also relates to a base station, methods in user equipment, user equipment, computer programs, and computer program products.
摘要:
The present invention discloses a network node (100) for multi-user scheduling involving retransmission. The network node comprises a receiver (110) adapted to receive channel quality indicator (CQI) report from a user equipment (UE), an adjuster (120) adapted to adjust signal to interference and noise ratio (SINR) derived from the CQI report to obtain SINR for retransmission, a combiner (130) adapted to combine SINR for initial transmission and SINR for one or a plurality of retransmission to obtain effective SINR, and a scheduler (140) adapted to perform multi-user scheduling on the basis of priority metric derived from the effective SINR. The present invention improves multi-user scheduling by taking HARQ combining gain into account. Instantaneous throughput as well as priority metric can be accurately measured, because SINR from not only channel quality (e.g. CQI) but also HARQ processing gain are both included.
摘要:
Devices and methods for improving performance in a network with geographically separated antenna ports based on determining arid reporting reference signal power from a communication device to a base station are provided. In one aspect, the difference between received reference signal power values is used in determining a reported reference signal power value, such as reference signal received power (RSRP) in a Multiple-Input Multiple-Output (MIMO) network including geographically separated antenna ports transmitting on cell-specific reference signal (CBS) ports 0 and 1. Devices and methods for measuring and reporting per-port reference signal power values are provided.
摘要:
Devices and methods for improving performance in a network with geographically separated antenna ports based on determining arid reporting reference signal power from a communication device to a base station are provided. In one aspect, the difference between received reference signal power values is used in determining a reported reference signal power value, such as reference signal received power (RSRP) in a Multiple-Input Multiple-Output (MIMO) network including geographically separated antenna ports transmitting on cell-specific reference signal (CBS) ports 0 and 1. Devices and methods for measuring and reporting per-port reference signal power values are provided.
摘要:
The present invention discloses a user equipment (UE) (100), comprising: a first measuring unit (110) adapted to measure time alignment error (TAE) and/or frequency alignment error (FAE) for antenna ports belonging to transmission point devices in Coordinated Multipoint Transmission (CoMP), the TAE including internal TAE and/or external TAE; and a first feedback unit (120) adapted to feedback the measured internal TAE, and/or external TAE, and/or FAE to at least one of the transmission point devices. The present invention provides a simple, direct and efficient approach for measuring and feeding back the cell-specific internal TAE and/or the UE-specific external TAE/FAE by UE and compensating the TAE/FAE by the transmission point device in the CoMP transmission, so that the CoMP transmission can properly operate.
摘要:
The present invention discloses a user equipment (UE) (100), comprising: a first measuring unit (110) adapted to measure time alignment error (TAE) and/or frequency alignment error (FAE) for antenna ports belonging to transmission point devices in Coordinated Multipoint Transmission (CoMP), the TAE including internal TAE and/or external TAE; and a first feedback unit (120) adapted to feedback the measured internal TAE, and/or external TAE, and/or FAE to at least one of the transmission point devices. The present invention provides a simple, direct and efficient approach for measuring and feeding back the cell-specific internal TAE and/or the UE-specific external TAE/FAE by UE and compensating the TAE/FAE by the transmission point device in the CoMP transmission, so that the CoMP transmission can properly operate.
摘要:
A method in a first base station for obtaining channel state information from a user equipment is provided. The first base station is comprised in a wireless communication system. The wireless communication system further comprises the user equipment. The first base station estimates (403) a first offset value for a first set of subframes based on a first channel information. The first base station further estimates (404) a second offset value for a second set of subframes based on a second channel information. The first base station transmits (405) the estimated first offset value and the estimated second offset value to the user equipment. The first base station then obtains (407) channel state information from the user equipment. The channel state information is based on the transmitted estimated first offset value and the estimated second offset value. The channel state information is to be used for transmission in the first base station.
摘要:
A method in a first base station for obtaining channel state information from a user equipment is provided. The first base station is comprised in a wireless communication system. The wireless communication system further comprises the user equipment. The first base station estimates (403) a first offset value for a first set of subframes based on a first channel information. The first base station further estimates (404) a second offset value for a second set of subframes based on a second channel information. The first base station transmits (405) the estimated first offset value and the estimated second offset value to the user equipment. The first base station then obtains (407) channel state information from the user equipment. The channel state information is based on the transmitted estimated first offset value and the estimated second offset value. The channel state information is to be used for transmission in the first base station.