摘要:
Embodiments of the present invention relate to heater patterns and related methods of producing hydrocarbon fluids from a subsurface hydrocarbon-containing formation (for example, an oil shale formation) where a heater cell may be divided into nested inner and outer zones. Production wells may be located within one or both zones. In the smaller inner zone, heaters may be arranged at a relatively high spatial density while in the larger surrounding outer zone, a heater spatial density may be significantly lower. Due to the higher heater density, a rate of temperature increase in the smaller inner zone of the subsurface exceeds that of the larger outer zone, and a rate of hydrocarbon fluid production ramps up faster in the inner zone than in the outer zone. In some embodiments, a ratio between a half-maximum sustained production time and a half-maximum rise time of a hydrocarbon fluid production function is relatively large.
摘要:
Some embodiments of the present invention relate to the use of wind-electricity to produce unconventional oil from a kerogen-containing or bitumen-containing subsurface formation. A heater cell may be divided into nested inner and outer zones. In the smaller inner zone, heaters may be arranged at a relatively high spatial density while in the larger surrounding outer zone, a heater spatial density may be significantly lower. Due to the higher heater density, a rate of temperature increase in the smaller inner zone of the subsurface exceeds that of the larger outer zone, and a rate of hydrocarbon fluid production ramps up faster in the inner zone than in the outer zone. In some embodiments, at least a majority of the heaters in the inner zone are powered primarily by fuel combustion and at least a majority of heaters in the outer zone are powered primarily by electricity generated by wind. Alternatively, in other embodiments, at least a majority of the heaters in the inner zone are powered primarily by electricity generated by wind and at least a majority of heaters in the outer zone are powered primarily by fuel combustion.
摘要:
Embodiments of the present invention relate to heater patterns and related methods of producing hydrocarbon fluids from a subsurface hydrocarbon-containing formation (for example, an oil shale formation) where a heater cell may be divided into nested inner and outer zones. Production wells may be located within one or both zones. In the smaller inner zone, heaters may be arranged at a relatively high spatial density while in the larger surrounding outer zone, a heater spatial density may be significantly lower. Due to the higher heater density, a rate of temperature increase in the smaller inner zone of the subsurface exceeds that of the larger outer zone, and a rate of hydrocarbon fluid production ramps up faster in the inner zone than in the outer zone. In some embodiments, a ratio between a half-maximum sustained production time and a half-maximum rise time of a hydrocarbon fluid production function is relatively large.
摘要:
Embodiments of the present invention relate to heater patterns and related methods of producing hydrocarbon fluids from a subsurface hydrocarbon-containing formation (for example, an oil shale formation) where a heater cell may be divided into nested inner and outer zones. Production wells may be located within one or both zones. In the smaller inner zone, heaters may be arranged at a relatively high spatial density while in the larger surrounding outer zone, a heater spatial density may be significantly lower. Due to the higher heater density, a rate of temperature increase in the smaller inner zone of the subsurface exceeds that of the larger outer zone, and a rate of hydrocarbon fluid production ramps up faster in the inner zone than in the outer zone. In some embodiments, a ratio between a half-maximum sustained production time and a half-maximum rise time of a hydrocarbon fluid production function is relatively large.
摘要:
A method is disclosed for generating an areal map of a pre-determined hydrocarbon liquid property of a subsurface kerogen-containing source rock from an electromagnetic resistivity profile. Preferably, the profile is generated by a transient EM method such as a long-offset transient electromagnetic (LOTEM) method. In some embodiments, the areal map is generated by employing resistivity-hydrocarbon liquid-quality relationship data describing a relationship between (i) a property of hydrocarbon liquid generated within the source rock pore space to (ii) an electrical resistivity of the source rock. In some embodiments, it is possible to acquire such data even in the absence of source rock samples where the hydrocarbon liquids within the samples has been preserved. The areal map is useful for determining a target location and/or depth in the source rock to drill for oil. The presently-disclosed techniques are particularly relevant to tight oil formations.
摘要:
Hydrocarbon-containing rocks (e.g, mined oil shale or mined coal or tar sands) are introduced into an excavated enclosure (e.g. a pit or an impoundment) to form. a bed of rocks therein, One or more heaters (e.g. molten salt heaters) are operated to pyrolyze kerogen or bitumen of the rocks. In some embodiments, a hydrocarbon reflux loop is maintained within the enclosure to convectively heat the hydrocarbon-containing rocks by boiling hydrocarbon liquids from a reservoir at the bottom of the enclosure so that vapor passes to the top of the enclosure, condenses, and falls back through the bed. Alternatively or additionally, the rocks may be heated by heaters embedded within wall(s) and/or a floor of the enclosure. Some embodiments relate to techniques for upgrading mined coal to recover both hydrocarbon pyrolysis fluids and upgraded coal (e.g. anthracite coal).
摘要:
Embodiments of the present invention relate to heater patterns and related methods of producing hydrocarbon fluids from a subsurface hydrocarbon-containing formation (for example, an oil shale formation) where a heater cell may be divided into nested inner and outer zones. Production wells may be located within one or both zones. In the smaller inner zone, heaters may be arranged at a relatively high spatial density while in the larger surrounding outer zone, a heater spatial density may be significantly lower. Due to the higher heater density, a rate of temperature increase in the smaller inner zone of the subsurface exceeds that of the larger outer zone, and a rate of hydrocarbon fluid production ramps up faster in the inner zone than in the outer zone. In some embodiments, a ratio between a half-maximum sustained production time and a half-maximum rise time of a hydrocarbon fluid production function is relatively large.
摘要:
An apparatus and method for control of at least one of a plurality of semiautonomous marine vessels are provided. The system includes a control station with a communications system for network communication with marine vessels, and provides diagnostics and control for control and monitoring of the marine vessels, according to a mission plan.
摘要:
An apparatus and method for control of at least one of a plurality of semiautonomous marine vessels are provided. The system includes a control station with a communications system for network communication with marine vessels, and provides diagnostics and control for control and monitoring of the marine vessels, according to a mission plan.