摘要:
Methods are provided for identifying the location and height of induced subterranean formation fractures and the presence of any associated frac-pack or gravel pack material in the vicinity of the borehole using pulsed neutron capture (PNC) logging tools. The proppant/sand used in the fracturing and packing processes is tagged with a thermal neutron absorbing material. When proppant is present, increases in detected PNC formation and/or borehole component cross-sections, combined with decreases in measured count rates, are used to determine the location of the formation fractures and the presence and percent fill of pack material in the borehole region. Changes in measured formation cross-sections relative to changes in other PNC parameters provide a relative indication of the proppant in fractures compared to that in the borehole region.
摘要:
A method for determining the location and height of a fracture in a subterranean formation using a neutron emitting logging tool. The method includes obtaining a pre-fracture data set, fracturing the formation with a slurry that includes a proppant doped with a high thermal neutron capture cross-section material, obtaining a post-fracture data set, comparing the pre-fracture data set and the post-fracture data set to determine the location of the proppant, and correlating the location of the proppant to a depth measurement of the borehole to determine the location and height of the fracture. Using a pulsed neutron capture tool, it is also possible to determine whether the proppant is located in the fracture, in the borehole adjacent to the fracture, or in both. The method may also include a plurality of post-fracture logging procedures used to determine various fracture and production characteristics in the formation.
摘要:
Proppant placed in a subterranean fracture zone is detected with a spectral identification method in which capture gamma ray spectra are obtained during a logging run carried out with a logging tool having a neutron emitting source and at least one detector sensitive to thermal neutron capture gamma rays. Capture gamma rays from one or more high thermal neutron cross-section materials in the proppant are distinguished from capture gamma rays produced by thermal neutron capture reactions with other downhole formation and borehole constituents utilizing a spectral processing/deconvolution technique. The capture gammas rays from the high thermal neutron capture cross section material in the proppant are used to identify propped fracture zones either alone or in combination with other proppant identification methods which rely on measuring thermal neutron related count rates and/or thermal neutron capture cross-sections from neutron, compensated neutron, and/or pulsed neutron capture logging tools.
摘要:
Methods for determining the locations/heights of fractures in a subterranean formation use a post-fracture log obtained with a compensated neutron or pulsed neutron logging tool. Utilizing predetermined relationships between tool count rates and associated near/far count rate ratios, the methods detect the presence of proppant containing high thermal neutron capture cross-section material, substantially eliminating proppant determination uncertainty resulting from changes in formation hydrogen index. In an interval of a well with given borehole and formation conditions, and not containing proppant, a relationship is developed between detector count rate and near/far ratio. This relationship is used to compute count rate from the ratio in intervals of the well possibly containing proppant and which have similar formation and borehole conditions. The count rate computed from the ratio is compared with the observed detector count rate, with proppant indicated from suppression in observed count rate relative to count rate computed from the ratio.
摘要:
Methods are provided for determining the locations and heights of fractures in a subterranean formation using a neutron-emitting logging tool. Utilizing predetermined relationships (1) between logging tool count rates and associated apparent formation hydrogen index values and (2) between logging tool count rate ratios and associated apparent formation hydrogen index values, the methods detect the presence and heights in the formation of proppant containing high thermal neutron capture cross section material in a manner substantially eliminating proppant determination uncertainty resulting from a prior change in formation hydrogen index values. A second, associated, method employing logging tool count rates and count rate ratios to determine the presence of proppant containing high thermal neutron capture cross section absorbers utilizes a crossplot of count rate versus ratio. Logged intervals containing no proppant will fall on a trend/trendline on the crossplot, whereas logged intervals containing proppant will fall off from this trend/trendline.
摘要:
Methods are provided for determining the locations and heights of fractures in a subterranean formation using a neutron-emitting logging tool. Utilizing predetermined relationships (1) between logging tool count rates and associated apparent formation hydrogen index values and (2) between logging tool count rate ratios and associated apparent formation hydrogen index values, the methods detect the presence and heights in the formation of proppant containing high thermal neutron capture cross section material in a manner substantially eliminating proppant determination uncertainty resulting from a prior change in formation hydrogen index values. A second, associated, method employing logging tool count rates and count rate ratios to determine the presence of proppant containing high thermal neutron capture cross section absorbers utilizes a crossplot of count rate versus ratio. Logged intervals containing no proppant will fall on a trend/trendline on the crossplot, whereas logged intervals containing proppant will fall off from this trend/trendline.
摘要:
A separating system for separating a fluid mixture incorporates a smart surface having reversibly switchable properties. A voltage is selectively applied to the smart surface to attract or repel constituents of a fluid mixture, such as oil and water produced from a hydrocarbon well. The smart surface can be used in a conditioner to increase droplet size prior to entering a conventional separator, or the smart surface and other elements of the invention can be incorporated into an otherwise conventional separator to enhance separation. In a related aspect, a concentration sensor incorporating smart surfaces senses concentration of the fluid mixture's constituents.
摘要:
A downhole oil and water separator for an oil well includes a water-selective membrane disposed in a production flowpath of the well. The water-selective membrane is operable to selectively pass water from the production flowpath to a disposal zone to increase the concentration of oil in the production flowpath at the surface.
摘要:
Cesium solutions are treated in a cavitation device to increase their temperature and facilitate the removal of water from them. The context is normally an oil well fluid or a mining solution. The concentrated solutions can be reused, in the case of oil well fluids, or more easily handled for recovery of the elemental cesium or cesium in the form of a salt. Thermal energy is saved by using the concentrate or the water vapor to heat various streams within the system.
摘要:
The present invention relates to methods and apparatus for making in situ thermal property determinations utilizing a heat source employed in wellbore stabilization procedures, well drilling, or well perforating, for example. In particular, using a heat source, such as a laser driller, to enable formation temperature measurements. Based on these measurements, thermal properties of the formation may be inferred.