摘要:
The invention relates to a device for green machining bevel gears, including a CNC machining station for gear cutting a wheel blank (K2). The machining station includes a tool spindle which is used to receive a gear cutting tool and a work piece spindle which is used to receive the gear blank (K2). The machining station also relates to a machining station which operates in a vertical manner. The device also comprises a vertical processing station having a tool holder and a work piece spindle which is used to receive a work piece blank (K1). The machining station mechanically forms a functional unit together with the pre-machining station, wherein the work piece blank (K1) undergoes green machining in the pre-machining station, and is transferred as a gear blank (K2) to the first machining station after the first green machining where it is cut into a gear. The machining station and the pre-machining station are linked together in terms of data and control.
摘要:
The invention relates to a device for green machining bevel gears, comprising an CNC machining station for gear cutting a wheel blank (K2). The machining station comprises a tool spindle which is used to receive a gear cutting tool and a work piece spindle which is used to receive the gear blank (K2). Said machining station also relates to a machining station which operates in a vertical manner. Said device also comprises a vertical processing station having a tool holder and a work piece spindle which is used to receive a work piece blank (K1). The machining station mechanically forms a functional unit together with the pre-machining station, wherein the work piece blank (K1) undergoes green machining in the pre-machining station, and is transferred as a gear blank (K2) to the first machining station after the first green machining where it is cut into a gear. Said machining station and the pre-machining station are linked together in terms of data and control.
摘要:
A bevel gear cutting machine, which is designed for, among other things, chamfering and/or deburring edges on the teeth of a bevel gear. The gear cutting machine has a workpiece spindle which receives the bevel gear coaxially. A carriage is provided, which receives a plate-shaped cutter head having multiple bar blades. The gear cutting machine has multiple numerically controllable axes, which are activatable via a programmable controller, one of the axes forming a workpiece spindle axis of the workpiece spindle. Another axis is used as the tool spindle axis of the plate-shaped cutter head. The numerically controllable axes are implemented and positioned so that by adjusting at least one of the axes, the workpiece spindle, together with the bevel gear, may be inclined in relation to the cutter head in such a way that the bar blades, while the workpiece spindle rotates around the workpiece spindle axis and the cutter head rotates around the tool spindle axis simultaneously, plunge one after another into tooth intermediate spaces of neighboring teeth and execute a chamfering or deburring motion in relation to the edge.
摘要:
The invention relates to an apparatus for machining bevel gears in an indexing method and method for machining the pitch of gears, wherein the production-related pitch error is compensated. The apparatus (20) comprises an interface (11, 12) and can be connected to a measurement system (10) by means of this interface (11, 12). The interface is designed such that the apparatus (20) can take correction values or correction factors from the measurement system (10) in a form in order to be able to adapt master data or neutral data. The data, which was originally present in a memory (51) of the apparatus (20), is corrected on the basis of these correction values or correction factors before production of one or more bevel gears (31) is initiated on the apparatus (20).
摘要:
The invention relates to an apparatus for machining bevel gears in an indexing method and method for machining the pitch of gears, wherein the production-related pitch error is compensated. The apparatus (20) comprises an interface (11, 12) and can be connected to a measurement system (10) by means of this interface (11, 12). The interface is designed such that the apparatus (20) can take correction values or correction factors from the measurement system (10) in a form in order to be able to adapt master data or neutral data. The data, which was originally present in a memory (51) of the apparatus (20), is corrected on the basis of these correction values or correction factors before production of one or more bevel gears (31) is initiated on the apparatus (20).
摘要:
Bevel gear cutting machine for chamfering and/or deburring edges on the teeth of a bevel gear. The gear-cutting machine comprises a workpiece spindle, which receives the bevel gear coaxially of a spindle axis. Furthermore, a deburring spindle is provided for the receiving of a deburring tool and several numerically controllable axes are given. A deburring blade head with several blade cutter-like blade inserts serves as deburring tool, whereby the blade inserts are insertable in recesses of the deburring blade head essentially radially oriented to a deburring spindle axis (E) and comprise edges for chamfering and/or deburring.
摘要:
In a method and apparatus for machining spiral bevel gears a rotationally symmetric tool is used and is driven about its axis of rotation as it is moved along with a workpiece into a respective initial starting position. The workpiece is rotated about one tooth index and a complete tooth space is processed via a generating method to a preset generating depth. The tool and workpiece each reach first end roll positions and are then moved into respective second starting positions near the previously reached end roll position. The workpiece is once again rotated about a tooth index and another tooth space completed through the generating process using a roll direction reverse relative to the initial tooth generating process. The tool and workpiece reach a second end roll position near the first start position and these steps are repeated until all the tooth spaces of the workpiece have been processed.
摘要:
The invention relates to a form blade (10) for the milling of bevel gears, with a base body (11) which has a receiving area and with at least two cutting strips (13.1, 13.2) with a cutting edge (18.1). The cutting strips (13.1, 13.2) are detachably fixed in corresponding receiving areas (12.1, 12.2) of the base body (11).
摘要:
Soft milling bevel gear teeth on multiple similar bevel gears using a universal hobbing tool with a set of bar cutters comprising a plurality of pairs of inner and outer cutting edges, having four machining phases: 1) simultaneous milling machining a first bevel gear's convex inner and concave outer flanks with the pairs; 2) milling finishing pre-machining either the concave outer flanks with the outer cutting edges the convex inner flanks with the inner cutting edges without employing respective other cutting edges; 3) using the same tool with the same set of cutter bars to pre-tooth a second similar bevel gear, including simultaneous milling machining the gear's convex inner and concave outer flanks; 4) milling finishing pre-machining on the second gear either the concave outer flanks with the outer cutting edges or the convex inner flanks with the inner cutting edges without employing respective other cutting edges.
摘要:
In a method and apparatus for machining spiral bevel gears a rotationally symmetric tool is driven about its axis of rotation as it is moved, along with a workpiece, into a respective initial starting position. The workpiece is rotated about one tooth index, and a complete tooth space is processed via a generating method to a preset generating depth. The tool and workpiece each reach first end roll positions and are then moved into respective second starting positions near the previously reached end roll position. The workpiece is once again rotated about a tooth index and another complete tooth space is generated using a roll direction reversed relative to the initial tooth generating process. The tool and workpiece reach a second end roll position near the first start position and these steps are repeated until all the tooth spaces of the workpiece have been processed.