摘要:
A face hobbing cutter system for face hobbing spiral bevel gears. The system includes at least one set of detachable cartridge assemblies having a plurality of respective cartridge assemblies. Each cartridge assembly includes a plurality of cartridges and indexable milling inserts. A part of the inserts of each set of cartridge assemblies are rhombic, tangential-mounted inserts for milling flanks of spiral bevel gear teeth, while the other inserts are grooving inserts, which are arranged transversely to the tangential-mounted inserts, for milling roots of spiral bevel gear teeth. The tangential-mounted inserts of each set of cartridge assemblies are provided in pairs, one being provided with its front facing the central axis, and the other being provided with its front facing away the central axis, to respectively mill concave curved flanks and convex curved flanks of the spiral bevel gear teeth.
摘要:
The present invention relates to a method for removing chips on a cutting machine. The method includes: a first step in which an air supplied from an air supply source is introduced to a first opening and is ejected from the first opening, so that an airflow having a predetermined chip blowing force is blown onto a first region among surfaces of respective parts of the cutting machine and respective parts of a work; and a second step in which a moving member having a communication path extending from an air inlet port to a second opening is moved to a position at which the air inlet port is communicated with the first opening, so that the air is ejected from the second opening and thus an airflow having a predetermined chip blowing force is blown onto a second region among the surfaces of the respective parts of the cutting machine and the respective parts of the work.
摘要:
A device (10) for soft machining of bevel gears, having a receptacle (12) for receiving a bevel gear blank (K1) and having a tool spindle (13.1) for receiving a cutter head (13.2). The device comprises a machining arm (11) having a pivot axis (A1) which has the tool spindle (13.1) for receiving the cutter head (13.2) on a first side and has a tool spindle (14.1) for receiving an end-milling cutter (14.2) on a second side. A CNC controller (S) puts the end-milling cutter (14.2) into rapid rotation to cut a predefined number of tooth gaps on the bevel gear blank (K1). After the machining arm (11) is pivoted, the cutter head used as the bevel gear finishing tool (13.2) is used. It is put into slower rotation to machining the bevel gear blank (K1) using the bevel gear finishing tool (13.2) in a post-machining process.
摘要:
Chip enclosure (150) wherein the interior portion comprises a primary suction port (152) and a secondary suction port (154). Both primary suction port and secondary suction port are connected via a short neck portion (155) to outlet (156) that is in communication with a source of vacuum. The bulk of chips formed as a result of machining are captured by the primary suction port (152) while any remaining chips fall to the lowest location of the chip enclosure (150) where they are drawn in to the secondary suction port (154).
摘要:
In a method for the machining of a workpiece (2) which is driven in rotary movement about a workpiece axis (Z) and whose shape includes a periodic structure, specifically a workpiece with gear teeth, a cutting tool which has gear-like teeth with a cutting edge formed at a frontal end of the teeth and which is driven in rotary movement about a cutting tool axis that is radially spaced apart from the workpiece axis, is brought into a rolling engagement with the workpiece under a crossing angle between the two rotary axes, wherein the cutting edge removes material from the workpiece through a cutting movement that has a component in the direction parallel to the workpiece axis, and wherein for the machining of the workpiece over a desired axial range the cutting tool is in addition made to perform a feed movement having a component parallel to the workpiece axis. According to the method, the feed movement component parallel to the workpiece axis and the cutting movement component parallel to the workpiece axis are oriented in opposite directions relative to each other.
摘要:
In a method for the machining of a workpiece (2) which is driven in rotary movement about a workpiece axis (Z) and whose shape includes a periodic structure, specifically a workpiece with gear teeth, a cutting tool which has gear-like teeth with a cutting edge formed at a frontal end of the teeth and which is driven in rotary movement about a cutting tool axis that is radially spaced apart from the workpiece axis, is brought into a rolling engagement with the workpiece under a crossing angle between the two rotary axes, wherein the cutting edge removes material from the workpiece through a cutting movement that has a component in the direction parallel to the workpiece axis, and wherein for the machining of the workpiece over a desired axial range the cutting tool is in addition made to perform a feed movement having a component parallel to the workpiece axis. According to the method, the feed movement component parallel to the workpiece axis and the cutting movement component parallel to the workpiece axis are oriented in opposite directions relative to each other.
摘要:
Provided is a surface coating film having a high degree of hardness and an excellent oxidation-resistance, and a method of manufacturing thereof, a cutting tool and a cutting machine. In the surface coating film, an oxidation-resistance layer containing, as a main component, a complex oxide of Li and at least Al, is coated on the outer surface of a base material, direct thereonto or through the intermediary of a highly hard coating layer. Further, in a method of manufacturing a surface coating film, the base material as it is or a highly hard coating layer coated substance in which a highly hard coating layer is coated on the outer surface of the base material is supported in a hermetic container with the use of a holder arranged in the container, then a complex oxide forming target formed from an Li and at least Al as main components, is arranged in the container into which oxygen is then fed, and en electric discharge is effected between the complex oxide forming target as an anode and the holder as a cathode so as to form an oxidation-resistance layer on the outer surface of the base material or the highly hard coating layer coated substance.
摘要:
A device (10) for soft machining of bevel gears, having a receptacle (12) for receiving a bevel gear blank (K1) and having a tool spindle (13.1) for receiving a cutter head (13.2). The device comprises a machining arm (11) having a pivot axis (A1) which has the tool spindle (13.1) for receiving the cutter head (13.2) on a first side and has a tool spindle (14.1) for receiving an end-milling cutter (14.2) on a second side. A CNC controller (S) puts the end-milling cutter (14.2) into rapid rotation to cut a predefined number of tooth gaps on the bevel gear blank (K1). After the machining arm (11) is pivoted, the cutter head used as the bevel gear finishing tool (13.2) is used. It is put into slower rotation to machining the bevel gear blank (K1) using the bevel gear finishing tool (13.2) in a post-machining process
摘要:
A CNC machine for producing spiral-toothed bevel gears is described, which has a first carriage supporting a tool spindle and is displaceable in height, and whose guide is disposed on a lateral surface of a machine housing, which is horizontally guided in a straight coordinate axis on a machine base. The tool spindle axis is parallel with the lateral surface and with the coordinate axis. Furthermore, the machine has a workpiece spindle support having a second carriage and a pivoting device with a vertical axis and is also horizontally guided on the machine base. The parallel arrangement of the tool spindle axis results in a new machine concept with a compact structure and optimal chip flow. Therefore the machine is particularly suited for heavy-duty dry milling. Since the tool spindle is not located above the area of the machine having a horizontal guide, it is possible to arrange a chip collector underneath the tool spindle, which can be reached by the chips essentially under the force of gravity.
摘要:
Method for gear cutting a bevel gear workpiece, wherein a preliminary machining phase includes a first machining procedure, wherein a first relative infeed movement moves the gear cutting tool into a first starting position relative to the bevel gear workpiece, the gear cutting tool penetrates the material of the bevel gear workpiece relative to the bevel gear workpiece, proceeding from the first starting position up to a first end position, and the gear cutting tool and bevel gear workpiece carry out a first rolling procedure in a first rolling range, carrying out a further rolling procedure, in order to post-machine at least one of the tooth gaps on the bevel gear workpiece using the rotationally-driven gear cutting tool or another rotationally-driven gear cutting tool, wherein in the scope of this further rolling, a rolling rotation is carried out in a further rolling range, which differs from the first rolling range.