摘要:
In accordance with one embodiment, a method of modifying the surface of silica nanopowder by a spray heating process is provided. In the method, surface characteristics of silica nanopowder are modified from hydrophilic to hydrophobic. A colloidal suspension including silica nanopowder and a surface modifier which are dissolved in ethanol is sprayed and thermally dried so that the surface characteristics of silica nanopowder are modified by the surface modifier coated on the surface of silica nanopowder. In the method, silica nanopowder surfaces are modified from hydrophilic to hydrophobic by controlling concentration and type of a surface modifier and heating temperature.
摘要:
Disclosed is a method for producing a cerium dioxide nanopowder by flame spray pyrolysis. The method comprises dissolving a cerium compound in an organic solvent to prepare a precursor solution, atomizing the precursor solution into microdroplets using an ultrasonic atomizer, transferring the microdroplets together with an argon gas as a carrier gas to a central portion of a high-temperature diffusion flame burner, subjecting the microdroplets to pyrolysis and oxidation in the central portion of the diffusion flame burner to produce a cerium dioxide nanopowder, and collecting the cerium dioxide nanopowder using a collector. According to the method, a cerium dioxide nanopowder can be continuously produced on a large scale by flame spray pyrolysis. In addition, the particle size and uniformity of the cerium dioxide nanopowder can be controlled by appropriately selecting the kind of the solvent and the concentration of the raw material. Furthermore, flame spray pyrolysis allows the cerium dioxide to have a fluorite crystal structure.
摘要:
The present invention provides a method for preparing nanoporous Pt/TiO2 composite particles, nanoporous Pt/TiO2 composite particles prepared by the above preparation method, and a fuel cell comprising the nanoporous Pt/TiO2 composite particles. The nanoporous Pt/TiO2 composite particles according to the present invention have a catalytic effect similar to that of commercially available Pt/carbon black and, thus, can be applied to a fuel cell.
摘要翻译:本发明提供一种制备纳米多孔Pt / TiO2复合颗粒的方法,通过上述制备方法制备的纳米多孔Pt / TiO 2复合颗粒和包含纳米多孔Pt / TiO 2复合颗粒的燃料电池。 根据本发明的纳米多孔Pt / TiO 2复合颗粒具有类似于市售Pt /炭黑的催化效果,因此可以应用于燃料电池。
摘要:
Disclosed is a method for producing a cerium dioxide nanopowder by flame spray pyrolysis. The method comprises dissolving a cerium compound in an organic solvent to prepare a precursor solution, atomizing the precursor solution into microdroplets using an ultrasonic atomizer, transferring the microdroplets together with an argon gas as a carrier gas to a central portion of a high-temperature diffusion flame burner, subjecting the microdroplets to pyrolysis and oxidation in the central portion of the diffusion flame burner to produce a cerium dioxide nanopowder, and collecting the cerium dioxide nanopowder using a collector. According to the method, a cerium dioxide nanopowder can be continuously produced on a large scale by flame spray pyrolysis. In addition, the particle size and uniformity of the cerium dioxide nanopowder can be controlled by appropriately selecting the kind of the solvent and the concentration of the raw material. Furthermore, flame spray pyrolysis allows the cerium dioxide to have a fluorite crystal structure.
摘要:
The present invention provides a method for preparing nanoporous Pt/TiO2 composite particles, nanoporous Pt/TiO2 composite particles prepared by the above preparation method, and a fuel cell comprising the nanoporous Pt/TiO2 composite particles. The nanoporous Pt/TiO2 composite particles according to the present invention have a catalytic effect similar to that of commercially available Pt/carbon black and, thus, can be applied to a fuel cell.
摘要翻译:本发明提供一种制备纳米多孔Pt / TiO2复合颗粒的方法,通过上述制备方法制备的纳米多孔Pt / TiO 2复合颗粒和包含纳米多孔Pt / TiO 2复合颗粒的燃料电池。 根据本发明的纳米多孔Pt / TiO 2复合颗粒具有类似于市售Pt /炭黑的催化效果,因此可以应用于燃料电池。
摘要:
The present invention relates to a method for fabricating calcium carbonate nanoparticles dispersed in water from ground calcium carbonate of micrometer (μm) order using beads milling. More particularly, the present invention relates to a method for fabricating calcium carbonate nanoparticles dispersed in water by which a complex aqueous slurry comprising coarse ground calcium carbonate having an average particle size of several micrometers (μm) and a surfactant is subjected to beads milling, such that grinding and dispersion in water of the ground calcium carbonate occur simultaneously, and the resultant calcium carbonate nanoparticles have an average particle size of 10-100 nm and a unimodal clustering distribution.
摘要:
The present invention relates to a method for fabricating calcium carbonate nanoparticles dispersed in water from ground calcium carbonate of micrometer (μm) order using beads milling. More particularly, the present invention relates to a method for fabricating calcium carbonate nanoparticles dispersed in water by which a complex aqueous slurry comprising coarse ground calcium carbonate having an average particle size of several micrometers (μm) and a surfactant is subjected to beads milling, such that grinding and dispersion in water of the ground calcium carbonate occur simultaneously, and the resultant calcium carbonate nanoparticles have an average particle size of 10-100 nm and a unimodal clustering distribution.
摘要:
Provided are a method for preparing zinc oxide (ZnO) nanoparticles and a method for preparing ZnO nanofluid using the same. The method for preparing ZnO nanoparticles includes: a) heating deionized water; b) dissolving zinc (Zn) salt in the deionized water to prepare a precursor solution; c) adding solid alkali salt to the precursor solution to prepare a dispersion of ZnO nanoparticles; and d) separating the ZnO nanoparticles by solid-liquid separation and washing them with deionized water. Highly pure, crystalline ZnO nanoparticles with spherical shape and very narrow particle size distribution of 10 to 50 nm can be prepared quickly and at large scale and low cost using inexpensive materials via a stable low-temperature process, without using a dispersant. The associated low-temperature, normal-pressure process produces few harmful materials and may be easily employed for production of ZnO nanoparticles.
摘要:
Provided are a method for preparing zinc oxide (ZnO) nanoparticles and a method for preparing ZnO nanofluid using the same. The method for preparing ZnO nanoparticles includes: a) heating deionized water; b) dissolving zinc (Zn) salt in the deionized water to prepare a precursor solution; c) adding solid alkali salt to the precursor solution to prepare a dispersion of ZnO nanoparticles; and d) separating the ZnO nanoparticles by solid-liquid separation and washing them with deionized water. Highly pure, crystalline ZnO nanoparticles with spherical shape and very narrow particle size distribution of 10 to 50 nm can be prepared quickly and at large scale and low cost using inexpensive materials via a stable low-temperature process, without using a dispersant. The associated low-temperature, normal-pressure process produces few harmful materials and may be easily employed for production of ZnO nanoparticles.