摘要:
A process of selectively etching a sacrificial light absorbing material (SLAM) over a dielectric material, such as carbon doped oxide, on a substrate using a plasma of a gas mixture in a plasma etch chamber. The gas mixture comprises a hydrofluorocarbon gas, an optional hydrogen-containing gas, an optional fluorine-rich fluorocarbon gas, a nitrogen gas, an oxygen gas, and an inert gas. The process could provide a SLAM to a dielectric material etching selectivity ratio greater than 10:1.
摘要:
A process of selectively etching a sacrificial light absorbing material (SLAM) over a dielectric material, such as carbon doped oxide, on a substrate using a plasma of a gas mixture in a plasma etch chamber. The gas mixture comprises a hydrofluorocarbon gas, an optional hydrogen-containing gas, an optional fluorine-rich fluorocargon gas, a nitrogen gas, an oxygen gas, and an inert gas. The process could provide a SLAM to a dielectric material etching selectivity ratio greater than 10:1.
摘要:
In some implementations, a method is provided for inhibiting charge damage in a plasma processing chamber during a process transition from one process step to another process step, including performing a pre-transition compensation of at least one process parameter so as to inhibit charge damage from occurring during the process transition. In some implementations, a method is provided for inhibiting charge damage during a process transition from one process step to another process step, which includes changing at least one process parameter with a smooth non-linear transition. In some implementations, a method is provided which includes sequentially changing selected process parameters such that a plasma is able to stabilize after each change prior to changing a next selected process parameter.
摘要:
In some implementations, a method is provided in a plasma processing chamber for stabilizing etch-rate distributions during a process transition from one process step to another process step. The method includes performing a pre-transition compensation of at least one other process parameter so as to avoid unstable plasma states by inhibiting formation of a parasitic plasma during the process transition. In some implementations, a method is provided for processing a workpiece in plasma processing chamber, which includes inhibiting deviations from an expected etch-rate distribution by avoiding unstable plasma states during a process transition from one process step to another process step.
摘要:
A method of fabricating a dual damascene interconnect structure uses a very high frequency high-density plasma and selectively controlled substrate bias for in-situ etching a trench above a via hole of the interconnect structure and a barrier layer between the via hole and underlying conductive layer.
摘要:
A method of fabricating a dual damascene interconnect structure uses a very high frequency high-density plasma and selectively controlled substrate bias for in-situ etching a trench above a via hole of the interconnect structure and a barrier layer between the via hole and underlying conductive layer.
摘要:
In at least some embodiments, the present invention is a plasma etching method which includes applying a gas mixture comprising CF4, N2 and Ar and forming a high density and low bombardment energy plasma. The high density and low bombardment energy plasma is formed by using high source and low bias power settings. The gas mixture can further include H2, NH3, a hydrofluorocarbon gas and/or a fluorocarbon gas. The hydrofluorocarbon gas can include CH2F2, CH3F; and/or CHF3. The fluorocarbon gas can include C4F8, C4F6 and/or C5F8.
摘要翻译:在至少一些实施方案中,本发明是等离子体蚀刻方法,其包括施加包含CF 4 N 2,N 2和Ar的气体混合物并形成高密度和低轰击 能量等离子体 高密度和低轰击能量等离子体通过使用高源和低偏压功率设置形成。 气体混合物可以进一步包括H 2 CO 3,NH 3,氢氟烃气体和/或碳氟化合物气体。 氢氟烃气体可以包括CH 2 2 F 2 CH 3,CH 3 F; 和/或CHF 3。 碳氟化合物气体可以包括C 4 C 8 C 6,C 4 F 6和/或C 5 8 SUB>。
摘要:
In at least some embodiments, a plasma etch tool is provided which includes a processing chamber capable of receiving a workpiece. The plasma etch tool is configured to generate a high density and low bombardment energy plasma therein from a gas mixture which includes CF4, N2 and Ar, for processing the workpiece. The high density and low bombardment energy plasma is formed by using high source and low bias power settings. The density or electron density, can, depending on the embodiment, range from about 5×1010 electrons/cm3 and above, including about 1×1011 electrons/cm3 and above. The gas mixture can further include H2, NH3, a hydrofluorocarbon gas and/or a fluorocarbon gas.
摘要翻译:在至少一些实施例中,提供了包括能够接收工件的处理室的等离子体蚀刻工具。 等离子体蚀刻工具被配置为从包括CF 4 N 2,N 2和Ar的气体混合物产生高密度和低轰击能量等离子体,用于加工工件。 通过使用高源和低偏置功率设置形成高密度和低轰击能量等离子体。 根据实施例,密度或电子密度可以在约5×10 10电子/ cm 3以上,包括约1×10 11 / 电子/ cm 3以上。 气体混合物可以进一步包括H 2 CO 3,NH 3,氢氟烃气体和/或碳氟化合物气体。
摘要:
Certain embodiments include an etching method including providing an etch material, applying a gas mixture including hydrogen, forming a plasma, and etching the etch material. The etch material can include a low-k dielectric material. The gas mixture can include a hydrogen gas, a hydrogen-free fluorocarbon, and a nitrogen gas, and further include one or more of a hydrofluorocarbon gas, an inert gas, and/or a carbon monoxide gas. The hydrogen gas can be a diatomic hydrogen, a hydrocarbon, a silane and/or a fluorine-free hydrogen gas, including H2, CH4, C2H4, NH3, and/or H2O gases. The hydrogen-free fluorocarbon gas can be a CxFy gas (where x≧1 and Y≧1) and the hydrofluorocarbon gas can be a CxHyFz gas (where x≧1, y≧1 and z≧1). The gas mixture can be free of oxygen. Embodiments can include reduced pressures, reduced hydrogen flow rates and one or more plasma frequencies.
摘要:
An inductive antenna of a plasma reactor for processing a semiconductor wafer is connected to a radio frequency (RF) power source, and consists of a conductor arranged in successive loops that wind in opposing directions, adjacent pairs of the successive loops having facing portions in which current flow is parallel, the facing portions being sufficiently close to at least nearly share a common current path, whereby to form transitions across the facing portions between opposing magnetic polarizations.