摘要:
A Raman laser system, the system comprising a resonator cavity comprising a plurality of reflectors, wherein at least one reflector is an output reflector adapted for outputting a pulsed output beam from the resonator cavity at a frequency corresponding to a Raman shifted frequency of the pump beam, wherein the output reflector is partially transmitting at the Raman-converted frequency; a solid state Raman-active medium located in the resonator cavity to be pumped by a pulsed pump beam having a pump repetition rate and for Raman-converting a pump pulse incident on the Raman-active medium to a resonating pulse at a Raman-converted frequency resonating in the resonator cavity; a resonator adjuster for adjusting the optical length of the resonator to match the round-trip time of the resonating Raman-converted pulse with the pump beam repetition rate such that the resonating pulse is coincident both temporally and spatially with a pump pulse in the Raman-active medium on each round trip, to Raman amplify the resonating pulse at the Raman-converted frequency in the Raman-active medium. Also a multiwavelength Raman laser system further comprising a dispersive element and a plurality of coupled resonator cavities. Also, methods for providing ultrafast pulsed Raman laser operation.
摘要:
The invention provides a laser system (100) wherein the output may be selected from two or more different wavelengths of output laser light. The system (100) comprises a laser capable of having at least two different wavelengths of laser light resonating in the cavity (105) simultaneously. One of the frequencies is generated by a Raman crystal (135) which shifts the frequency of light generated by the lasing medium (125). A tunable non-linear medium (140), such as LBO, is provided in the cavity for selectively frequency converting at least one of the at least two different wavelengths of laser light. The conversion may be SHG, SFG or DFG for example. A tuner (145) is provided to tune the non-linear medium to select the particular wavelength to convert. Temperature tuning or angle tuning of the non-linear medium can be used. A Q switch (130) may also be provided in the cavity. The output laser beam can be used for treatment, detection or diagnosis of a selected area on or in a subject, and can be used in opthalmological and dermatological fields.
摘要:
The invention provides a laser system (100) wherein the output may be selected from two or more different wavelengths of output laser light. The system (100) comprises a laser capable of having at least two different wavelengths of laser light resonating in the cavity (105) simultaneously. One of the frequencies is generated by a Raman crystal (135) which shifts the frequency of light generated by the lasing medium (125). A tunable non-linear medium (140), such as LBO, is provided in the cavity for selectively frequency converting at least one of the at least two different wavelengths of laser light. The conversion may be SHG, SFG or DFG for example. A tuner (145) is provided to tune the non-linear medium to select the particular wavelength to convert. Temperature tuning or angle tuning of the non-linear medium can be used. A Q switch (130) may also be provided in the cavity. The output laser beam can be used for treatment, detection or diagnosis of a selected area on or in a subject, and can be used in opthalmological and dermatological fields.
摘要:
A mid- to far-infrared solid state Raman laser system comprising a resonator cavity comprising: an input reflector adapted to be highly transmissive for light with a first wavelength in the range of about 3 to about 7.5 micrometers for admitting the first beam to the resonator cavity; and an output reflector adapted to be partially transmissive for light with a second wavelength greater than about 5.5 micrometers for resonating the second wavelength in the resonator and for outputting an output beam, the input reflector further being adapted to be highly reflective at the second wavelength for resonating the second wavelength in the resonator; and a solid state diamond Raman material located in the resonator cavity for Raman shifting the pump beam and generating the second wavelength.
摘要:
A mid- to far-infrared solid state Raman laser system comprising a resonator cavity comprising: an input reflector adapted to be highly transmissive for light with a first wavelength in the range of about 3 to about 7.5 micrometers for admitting the first beam to the resonator cavity; and an output reflector adapted to be partially transmissive for light with a second wave-length greater than about 5.5 micrometers for resonating the second wavelength in the resonator and for outputting an output beam, the input reflector further being adapted to be highly reflective at the second wavelength for resonating the second wave-length in the resonator; and a solid state diamond Raman material located in the resonator cavity for Raman shifting the pump beam and generating the second wavelength.
摘要:
Methods and systems for providing emission of incoherent radiation and uses therefor are disclosed. A system for providing emission of high peak power (in watts) incoherent radiation, comprises an electrically impeded discharge lamp linked to an electrical energy supply. The lamp comprises a discharge chamber which is at least partially transparent to the incoherent radiation, a discharge gas in the chamber, two electrodes disposed with respect to the chamber for discharging electrical energy therebetween, at least one dielectric barrier disposed between the two electrodes to electrically impede electrical energy passing between the two electrodes, an electrical energy supply capable of providing fast risetime, high peak power unipolar linking the electrodes with the supply, the energy supply being capable of providing a sequence of high peak power unipolar voltage pulses from the energy supply to the electrodes and means to control (i interpulse period, and (ii) pulse risetime, whereby, in use, a substantially homogeneous discharge occurs between the two electrodes which causes emission of incoherent radiation pulses of high peak power from the lamp.
摘要:
A laser comprising: a resonator cavity defined by at least two reflectors, wherein the at least two reflectors are highly reflective at a plurality of fundamental wavelengths; a laser medium disposed in the resonator cavity capable of generating plurality of fundamental wavelengths; an optical pump source for energizing the laser medium, thereby causing laser light at the plurality of fundamental wavelengths to resonate in the resonator cavity simultaneously; and a nonlinear material located in said resonator cavity capable of simultaneously converting each of the plurality of wavelengths of laser light to generate converted laser light having a plurality of converted wavelengths, said converted wavelengths being derived from but different to the fundamental wavelengths; wherein the non-linear material is at least partially phase matched to nonlinearly convert the frequencies of each of the fundamental wavelengths simultaneously such that a plurality of converted wavelengths are able to be simultaneously generated.
摘要:
A laser comprising: a first reflector and a second reflector defining a first resonator cavity; a third reflector defining a second resonator cavity with the first reflector; a laser material disposed such that it is located in both the first and the second resonator cavities, the laser material being capable of generating at least a first and a second wavelength of laser light when pumped by pump radiation from a pump source located external to the first and second resonator cavities; wherein the first reflector is adapted to reflect the first wavelength of laser light into the first resonator cavity and the third reflector is adapted to reflect the second wavelength of laser light into the second resonator cavity.
摘要:
A laser comprising: a resonator cavity defined by at least two reflectors, wherein the at least two reflectors are highly reflective at a plurality of fundamental wavelengths; a laser medium disposed in the resonator cavity capable of generating plurality of fundamental wavelengths; an optical pump source for energizing the laser medium, thereby causing laser light at the plurality of fundamental wavelengths to resonate in the resonator cavity simultaneously; and a nonlinear material located in said resonator cavity capable of simultaneously converting each of the plurality of wavelengths of laser light to generate converted laser light having a plurality of converted wavelengths, said converted wavelengths being derived from but different to the fundamental wavelengths; wherein the non-linear material is at least partially phase matched to nonlinearly convert the frequencies of each of the fundamental wavelengths simultaneously such that a plurality of converted wavelengths are able to be simultaneously generated.