摘要:
Optical blanks, for example spectacle lenses, are produced by hot-blank pressing or injection molding of polyorganoheterosiloxanes which are obtainable by hydrolytic polycondensation of at least one titanium-, zirconium-or tin-compound, at least one organofunctional silane and, where applicable, at least one inorganic oxide component. For control of the optical characteristics and working properties, polyorganoheterosiloxanes which have a polymerizable organic radical may be modified by additional polymerization with other copolymerizable condensates or monomers.
摘要:
A process for the production of transparent, electrically conductive, infrared-reflecting indium oxide-tin oxide layers, especially on glass panes, involves steps wherein the glass panes are dipped into a first solution containing a hydrolyzable silicon compound and hydrolyzable compounds of titanium, zirconium, aluminum, tin or tantalum;the glass panes are heated up to 450.degree. C. in a moisture-containing atmosphere;the initially coated panes are dipped into a second solution containing hydrolyzable compounds of indium and of tin;the panes are dried at temperatures below 250.degree. C.; andthe panes are finally heated up to 550.degree. C. in a reducing atmosphere.
摘要:
The invention includes a bilayer antireflection coating, multilayer antireflection coatings, and a method for making a multilayer antireflective coated substrate. The bilayer and multilayer coatings include layers having metallic oxides, at least one layer in each of such coatings having as a material with an index of refraction at least about 1.90, a layer comprising oxides of zirconium such that when subjected to heat treatments, such as tempering, the coatings substantially retain their optical properties. The coatings further include layers having materials of low index of refraction which include oxides of aluminum which provide coating stability and increased precursor storage life. In the method, the layers are applied by successive dip coating techniques using solvent-based solutions and the resulting coatings can be used to coat large sized substrates which can be later cut, trimmed and/or otherwise shaped and later heat treated with substantial retention of optical properties.
摘要:
The invention includes a bilayer antireflection coating, multilayer antireflection coatings, and a method for making a multilayer antireflective coated substrate. The bilayer and multilayer coatings include layers having metallic oxides, at least one layer in each of such coatings having as a material with an index of refraction at least about 1.90, a layer comprising oxides of zirconium such that when subjected to heat treatments, such as tempering, the coatings substantially retain their optical properties. The coatings further include layers having materials of low index of refraction which include oxides of aluminum which provide coating stability and increased coating solution storage life. In the method, the layers are applied by successive dip coating techniques using solvent-based solutions and the resulting coatings can be used to coat large sized substrates which can be later cut, trimmed and/or otherwise shaped and later heat treated with substantial retention of optical properties.
摘要:
The invention includes a thin film optical coating having a layer comprising sol-gel derived niobium oxide which is capable of providing an index of refraction of at least about 1.90. The invention also includes a thin film optical coating having a layer comprising a sol-gel derived oxide system including niobium oxide and a second oxide component such as aluminum oxide and/or silicon oxide which is capable of providing an index of refraction of from about 1.60 to about 1.90. Also included in the present invention are processes for producing such thin film coatings. In the processes, a substrate is immersed in a mixture comprising niobium chloride and an alcohol, withdrawn from the mixture, and heat-treated. The mixture may also include aluminum precursors and/or silicon precursors. The heat-treatment may occur at various temperatures, including those under 200° C.