Abstract:
The present invention relates to a high-altitude wind farm aircraft system. The aircraft has a plurality of wind turbines for capturing wind energy and converting same into electric energy which is stored in an onboard battery system. The electric energy, before storage, is stepped down by a transformer and converted into DC by an AC-DC converter. For use of the stored energy, the aircraft is brought to the ground and the batteries are removed to connect to a microgrid or any other electric circuit. The batteries can be installed again in the aircraft system for recharging with the aircraft going to high altitude for recharging the batteries. In one embodiment, the aircraft has an altitude indicator for indicating an appropriate altitude level for maximum efficiency of the system.
Abstract:
A twin vertical bank hybrid internal combustion H-engine system; an assembly having an engine block with parallel left side and right side vertical inline piston banks, each having a crankshaft and pistons, a cylinder head, and individual fuel feeds operable on a first and second fuel type respectively. Each piston bank operates independently of the other but is housed within the same engine block and has separate lubrication systems. An operator selects which engine to run based on fuel availability, convenience, or lower cost of a certain fuel type. The chosen engine is mechanically or electrically selected via an engine bank selector box using a selector control which selects the fuel type and engages a drive gear on the crankshaft of the selected engine, and transfers power to the transmission. The selector control actuates a transfer system that prevents simultaneous operation of both engines.
Abstract:
The present invention relates to a high-altitude wind farm aircraft system. The aircraft has a plurality of wind turbines for capturing wind energy and converting same into electric energy which is stored in an onboard battery system. The electric energy, before storage, is stepped down by a transformer and converted into DC by an AC-DC converter. For use of the stored energy, the aircraft is brought to the ground and the batteries are removed to connect to a microgrid or any other electric circuit. The batteries can be installed again in the aircraft system for recharging with the aircraft going to high altitude for recharging the batteries. In one embodiment, the aircraft has an altitude indicator for indicating an appropriate altitude level for maximum efficiency of the system.