摘要:
The present invention provides a method of manufacturing a bonded wafer. The method comprises an oxidation step in which an oxide film is formed on at least one surface of a base wafer, a bonding step in which the base wafer on which the oxide film has been formed is bonded to a top wafer to form a bonded wafer, and a thinning step in which the top wafer included in the bonded wafer is thinned. The oxidation step comprises heating the base wafer to a heating temperature ranging from 800 to 1300° C. at a rate of temperature increase ranging from 1 to 300° C./second in an oxidizing atmosphere, and the bonding step is carried out so as to position the oxide film formed in the oxidation step at an interface of the top wafer and the base wafer.
摘要:
A small amount of oxygen is ion-implanted in a wafer surface layer, and then heat treatment is performed so as to form an incomplete implanted oxide film in the surface layer. Thereby, wafer cost is reduced; a pit is prevented from forming in a surface of an epitaxial film; and a slip is prevented from forming in an external peripheral portion of a wafer.
摘要:
A small amount of oxygen is ion-implanted in a wafer surface layer, and then heat treatment is performed so as to form an incomplete implanted oxide film in the surface layer. Thereby, wafer cost is reduced; a pit is prevented from forming in a surface of an epitaxial film; and a slip is prevented from forming in an external peripheral portion of a wafer.
摘要:
There is provided a method of producing a bonded wafer by bonding two silicon wafers for active layer and support layer to each other and then thinning the wafer for active layer, in which nitrogen ions are implanted from the surface of the wafer for active layer to form a nitride layer in the interior of the wafer for active layer before the bonding.
摘要:
The present invention provides a method of manufacturing a bonded wafer. The method includes ozone washing two silicon wafers to form an oxide film equal to or less than 2.2 nm in thickness on each surface of the two silicon wafers, and bonding the two silicon wafers through the oxide films formed to obtain a bonded wafer.
摘要:
The present invention provides a method of manufacturing a bonded wafer. When bonding the top wafer through an insulating film exceeding about 1,000 Angstroms in thickness to the base wafer, a top wafer and a base wafer in which the total number of particles having a size of equal to or greater than about 0.20 micrometers present on the two surfaces being bonded is equal to or less than about 0.014 particles/cm2 are bonded; and when bonding the top wafer through an insulating film having a thickness of equal to or less than about 1,000 Angstroms to the base wafer, or with no insulating film present between the top wafer and the base wafer, a top wafer and a base wafer are bonded wherein the total number of particles having a size of equal to or greater than about 0.20 micrometers present on the two surfaces being bonded is equal to or less than about 0.007 particles/cm2.
摘要翻译:本发明提供一种制造接合晶片的方法。 当将顶部晶片通过超过约1,000埃厚度的绝缘膜与基底晶片接合时,顶部晶片和基底晶片,其中具有等于或大于约0.20微米的尺寸的总数存在于两个 键合的表面等于或小于约0.014个/ cm 2; 并且当通过具有等于或小于约1,000埃的厚度的绝缘膜将顶部晶片接合到基底晶片时,或者在顶部晶片和基底晶片之间不存在绝缘膜时,顶部晶片和基底晶片是 其中存在于粘合的两个表面上的具有等于或大于约0.20微米的尺寸的颗粒的总数等于或小于约0.007个/ cm 2。
摘要:
The thickness of a semiconductor wafer layer, extending from a mirror-finished surface thereof to a solid-state image sensing device, is measured. Based on the residual thickness data, plasma etching is performed from the mirror-finished surface until a predetermined thickness is reached by controlling the plasma etching amount. By doing this, it is possible to reduce variation in the thickness of the solid-state image sensing device at low cost without causing an increase in the number of processes.
摘要:
A method of producing an epitaxial wafer, comprising: implanting oxygen ions from a surface of a silicon wafer, thereby forming an ion implanted layer in a surface layer of the silicon wafer; after forming the ion implanted layer, implanting boron ions from the surface of the silicon wafer to the whole area in the ion implanted layer; performing heat treatment of the silicon wafer after implanting boron ions, thereby forming a thinning-stopper layer including a mixture of silicon particles, silicon oxides, and boron, and forming an active layer in the silicon wafer on the surface side of the thinning-stopper layer; and forming an epitaxial layer on the surface of the silicon wafer after the heat treatment.
摘要:
The present invention provides a method of manufacturing a bonded wafer. The method includes forming an oxygen ion implantation layer in an active layer wafer having a substrate resistivity of 1 to 100 mΩcm by implanting oxygen ions in the active layer wafer, bonding a base wafer and the active layer wafer directly or through an insulating layer to form a bonded wafer, heat treating the bonded wafer to strengthen the bond and convert the oxygen ion implantation layer into a stop layer, grinding, polishing, and/or etching, from the active layer wafer surface side, the bonded wafer in which the bond has been strengthened to expose the stop layer on a surface of the bonded wafer, removing the stop layer, and subjecting the bonded wafer from which the stop layer has been removed to a heat treatment under a reducing atmosphere to diffuse an electrically conductive component comprised in the active layer wafer.