摘要:
A fuel cell includes a positive electrode, a negative electrode, an enzyme including an oxidase that oxidizes a monosaccharide, the enzyme being immobilized on the negative electrode, an electron mediator including a compound having a naphthoquinone skeleton, the electron mediator being immobilized on the negative electrode, a coenzyme that is formed by oxidation of the monosaccharide, and a coenzyme oxidase that oxidizes the coenzyme, in which the ratio of the electron mediator to the coenzyme is in the range of 1.0 (mol):0.33 (mol) to 1.0 (mol):1.0 (mol).
摘要:
A fuel cell includes a positive electrode and a negative electrode which are opposed to each other with a proton conductor provided therebetween, and an enzyme immobilized as a catalyst on at least one of the positive and negative electrodes. In the fuel cell, the positive electrode, the proton conductor, and the negative electrode are accommodated in a space formed between a positive electrode current collector having a structure permeable to an oxidizer and a negative electrode current collector having a structure permeable to fuel.
摘要:
A fuel cell and an electronic device equipped therewith are disclosed. The fuel cell is of the type having a cathode and an anode facing each other with a proton conductor interposed therebetween, with at least either of the cathode or anode having an enzyme as a catalyst immobilized thereon, wherein at least a first cathode, a first proton conductor, an anode, a second proton conductor, and a second cathode are sequentially placed thereon, and in fuel is held in contact with at least part of the anode.
摘要:
A fuel cell and an electronic device equipped therewith are disclosed. The fuel cell is of the type having a cathode and an anode facing each other with a proton conductor interposed therebetween, with at least either of the cathode or anode having an enzyme as a catalyst immobilized thereon, wherein at least a first cathode, a first proton conductor, an anode, a second proton conductor, and a second cathode are sequentially placed thereon, and in fuel is held in contact with at least part of the anode.
摘要:
A porous electroconductive material is provided. The electroconductive material enables efficient enzymatic metabolic reactions on electrodes and yields electrodes having immobilized enzymes thereon which remain stable in any working environment. The porous electroconductive material, which has a three-dimensional network structure, is formed from a skeleton of porous material and a carbonaceous material covering the surface of the skeleton. The porous material constituting the skeleton is foamed metal or alloy. This porous electroconductive material is made into an electrode, and enzymes are immobilized on this electrode. The resulting electrode with immobilized enzymes thereon is used as the anode of a bio-fuel cell.
摘要:
To provide a fuel cell and a method of using the same, which enable such a reaction environment as to exhibit excellent properties as electrode sufficiently, and to provide a cathode for the fuel cell, a device using an electrode reaction, and an electrode for the device using an electrode reaction. A fuel cell 10 includes an electrolyte solution 7 arranged between a cathode 1 and an anode 5. The cathode 1 includes a porous material made typically of carbon and an immobilized thereon. The fuel cell is so configured as to bring at least part of the cathode 1 into contact with a reactant in a gaseous phase. The cathode 1 preferably further includes an immobilized electron-transfer mediator in addition to the enzyme. The reactant in a gaseous phase can be, for example, air or oxygen.
摘要:
A porous electroconductive material is provided. The electroconductive material enables efficient enzymatic metabolic reactions on electrodes and yields electrodes having immobilized enzymes thereon which remain stable in any working environment. The porous electroconductive material, which has a three-dimensional network structure, is formed from a skeleton of porous material and a carbonaceous material covering the surface of the skeleton. The porous material constituting the skeleton is foamed metal or alloy. This porous electroconductive material is made into an electrode, and enzymes are immobilized on this electrode. The resulting electrode with immobilized enzymes thereon is used as the anode of a bio-fuel cell.
摘要:
A porous electroconductive material is provided. The electroconductive material enables efficient enzymatic metabolic reactions on electrodes and yields electrodes having immobilized enzymes thereon which remain stable in any working environment. The porous electroconductive material, which has a three-dimensional network structure, is formed from a skeleton of porous material and a carbonaceous material covering the surface of the skeleton. The porous material constituting the skeleton is foamed metal or alloy. This porous electroconductive material is made into an electrode, and enzymes are immobilized on this electrode. The resulting electrode with immobilized enzymes thereon is used as the anode of a bio-fuel cell.
摘要:
Provided is a fuel cell capable of preventing elution of nicotinamide adenine dinucleotide and/or a derivative thereof immobilized on an electrode, and capable of preventing performance degradation due to elution, and a method for manufacturing the fuel cell.A biofuel cell having a structure in which a positive electrode and a negative electrode face each other via a proton conductor, the biofuel cell configured so that an enzyme is used to extract electrons from a fuel, wherein the negative electrode is configured from an electrode including carbon and/or an inorganic compound having pores with a size of 2 nm or more and 100 nm or less on the surface, nicotinamide adenine dinucleotide and/or a derivative thereof being immobilized on the carbon and/or the inorganic compound. A carbon particle, a carbon sheet, or carbon fiber is used as the carbon.
摘要:
A fuel cell with which in the case where an enzyme is immobilized to at least one of a cathode and an anode, sufficient buffer ability is able to be obtained even at the time of high output operation, ability inherent in the enzyme is able to be sufficiently demonstrated, and which has superior performance is provided. In a bio-fuel cell which has a structure in which a cathode and an anode are opposed to each other with an electrolyte layer containing a buffer substance in between, and in which an enzyme is immobilized to at least one of the cathode and the anode, a compound containing an imidazole ring is contained in the electrolyte layer as a buffer substance, and one or more acids selected from the group consisting of acetic acid, phosphoric acid, and sulfuric acid are further added.