摘要:
The transparent conductive film of the present invention is a transparent conductive film, comprising: a transparent film substrate; a patterned transparent conductive layer formed on one side of the transparent film substrate; and a colored layer provided on at least one of an opposite side of the transparent conductive layer from the transparent film substrate and an opposite side of the transparent film substrate from the transparent conductive layer, wherein the colored layer has an average absorptance of from 35% to 90% for light in the wavelength range of from 380 nm to 780 nm.
摘要:
A method of continuously subjecting an elongated substrate to vacuum film formation is disclosed. The method comprises the steps of: feeding a first substrate from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber; degassing the first substrate; forming a film of a second material on the first substrate, in a second film formation chamber; and rolling up the first substrate in the second roll chamber, thereby producing the first substrate, and comprises similar steps to produce a second substrate. In advance of producing the first substrate with the second material film, the first cathode electrode of the first film formation chamber is removed from the first film formation chamber, and, in advance of producing the second substrate with the first material film, the second cathode electrode of the second film formation chamber is removed from the second film formation chamber.
摘要:
The present invention provides a transparent conductive film in which the difference in visibility between the pattern portion and the pattern opening portion is kept small even when a transparent conductive layer is patterned. The transparent conductive film has a first dielectric layer, a second dielectric layer, and a transparent conductive layer in this order on a transparent film substrate, a thickness d21 of the first dielectric layer is larger than a thickness d22 of the second dielectric layer, the thickness d21 of the first dielectric layer is 8 to 40 nm and the thickness d22 of the second dielectric layer is 5 to 25 nm, and a difference between the thickness d21 of the first dielectric layer and the thickness d22 of the second dielectric layer, d21-d22, is 3 to 30 nm.
摘要:
The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a direction from the first roll chamber toward a second roll chamber, using a first surface as a surface for film formation; degassing the fed substrate; forming a first material film on the first surface of the degassed substrate in a first film formation chamber; forming a second material film on the first material film in a second film formation chamber; taking up the substrate in a roll form in the second roll chamber, the substrate having the material films formed thereon; unrolling and feeding the taken up substrate from the first roll chamber in the direction, using a second surface opposite the first surface of the substrate as a surface for film formation; and repeating all the above treatments.
摘要:
The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber, using a first surface as a surface for film formation; degassing the substrate fed in the first direction; forming a second material film on the first surface of the substrate in a second film formation chamber; taking up the substrate in a roll form in the second roll chamber, the substrate having the second material film formed thereon; unrolling and feeding the substrate from the second roll chamber in a second direction from the second roll chamber toward the first roll chamber; forming a first material film on the second material film in a first film formation chamber; taking up the substrate in a roll form in the first roll chamber.
摘要:
The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber; degassing the fed substrate; forming a first material film on a first surface in a first film formation chamber; guiding the substrate having the first material film formed thereon to a second film formation chamber in a second direction from the second roll chamber toward the first roll chamber; forming, in the second film formation chamber, a second material film on a second surface opposite the first surface of the substrate when it is being guided in the second direction; taking up, in a third roll chamber provided between the first roll chamber and the second roll chamber, the substrate in a roll state.
摘要:
Provided is an optical unit for a display panel device with a capacitive touch input function. In the optical unit, a touch panel laminate comprises: an optically transparent first substrate layer laminated to one surface of a transparent adhesive layer; a first transparent electrically conductive layer laminated, through a first undercoat layer, to a surface of the first substrate layer on a side opposite to the adhesive layer; an optically transparent second substrate layer laminated to the other surface of the adhesive layer; and a second transparent electrically conductive layer laminated, through a second undercoat layer, to a surface of the second substrate layer on a side opposite side to the adhesive layer.
摘要:
A transparent conductive film includes: a transparent film substrate; a transparent conductor layer provided on one or both sides of the transparent film substrate; and at least one undercoat layer interposed between the transparent film substrate and the transparent conductor layer; wherein: the transparent conductor layer is patterned; and a non-patterned portion not having the transparent conductor layer has the at least one undercoat layer.
摘要:
The transparent conductive laminate of the present invention is a transparent conductive laminate, comprising: a transparent film substrate; a transparent conductive thin film provided on one side of the transparent film substrate with a dielectric thin film interposed therebetween; and a transparent substrate bonded to another side of the transparent film substrate with a transparent pressure-sensitive adhesive layer interposed therebetween, wherein the transparent substrate comprises at least two transparent base films laminated with the transparent pressure-sensitive adhesive layer interposed therebetween, and the dielectric thin film comprises a first transparent dielectric thin film consisting of a SiOx (x is from 1.5 to less than 2) film having a relative refractive index of 1.6 to 1.9, and a second transparent dielectric thin film consisting of a SiO2 film. This feature can improve the surface contact pressure durability.
摘要:
The transparent conductive film of the present invention is a transparent conductive film, comprising a transparent film substrate, and a first transparent dielectric layer, a second transparent dielectric layer and a patterned transparent conductive layer that are formed on one or both sides of the transparent film substrate in this order from the transparent film substrate side, wherein the transparent conductive layer has a thickness of 31 nm or more, the first transparent dielectric layer has a thickness of from 7 nm to 16 nm, the second transparent dielectric layer has a thickness of from 30 nm to 60 nm, and the relation n2