Abstract:
An optical beam scanning apparatus which includes: an optical modulator which emits an optical beam in a direction corresponding to the frequency of an inputted signal; scanning device for scanning the optical beam; a scanning lens; a storage device which stores data for correcting the displacement of the optical beam passing through the scanning lens caused by an aberration of the scanning lens for each scanning position of the optical beam; and a device which, based on the data stored in the storage device, alters the frequency of the signal to be inputted to the optical modulator for each scanning position of the optical beam so as to correct the displacement of the optical beam caused by the aberration of the scanning lens.
Abstract:
A simultaneous multi-beam optical modulator device which has first modulators for amplitude modulating a plurality of carrier waves according to a plurality of input signals to produce a plurality of modulated signals and an audio optical device for separating an incoming beam of light into a plurality of sub-beams and for, at the same time, optically modulating the sub-beam upon receiving the modulated signals from their respective first modulators, is provided, further comprising an output device for storing indicator signals corresponding to the number of input signals fed to the first modulators and for selecting from these stored signals a signal corresponding to the number of the input signals to the first modulators, a digital/analog converter for converting the signal transmitted from the output device into an analog output which is used to varies the intensity of output light, and a second modulator for amplitude modulating the plural modulated signals transmitted from the first modulators according to the analog output of the digital/analog converter. Accordingly, the intensity of a light output from the audio optical device can be maintained constant.
Abstract:
A light beam modulated with image information is outputted from a light source and supplied to a switcher, which guides the light beam to one of exposure heads that is selected by the switcher. The light beam is applied from the selected exposure head to a photosensitive medium that is mounted on a partly cylindrical inner circumferential surface of a support to record an image thereon. The light beam can continuously be applied to the photosensitive medium from the exposure heads that are alternatively selected as facing the photosensitive medium, so that the image can efficiently be recorded on the photosensitive medium.
Abstract:
An optical beam scanning apparatus which includes: an optical modulator which emits an optical beam in a direction corresponding to the frequency of an inputted signal; scanning device for scanning the optical beam; a scanning lens; a storage device which stores data for correcting the displacement of the optical beam passing through the scanning lens caused by an aberration of the scanning lens for each scanning position of the optical beam; and a device which, based on the data stored in the storage device, alters the frequency of the signal to be inputted to the optical modulator for each scanning position of the optical beam so as to correct the displacement of the optical beam caused by the aberration of the scanning lens.
Abstract:
A light beam recording device. A light beam irradiated from a light beam irradiating device is scanned onto an object to be illuminated, which is provided in a vicinity of a focal position, while being focussed by a scanning optical system. A converging member is disposed on an optical path between the light beam irradiating device and the scanning optical system, and converges a light beam which is incident on the converging member. An optical path changing device is disposed in a vicinity of a converging position of a light beam which is converged by the converging member, and changes an optical path of the light beam.
Abstract:
A laser beam recorder arranged to record data with dots of a constant size, constant pitch and constant density, irrespective of possible differences in scanning speed between the middle and peripheral portions of a recording medium. The timing of irradiating the recording medium with the light beam is precipitated and the duration of the irradiation with the light beam is shortened as the scanning speed increases, whereby the dot size and dot pitch can be made constant irrespective of variation in the scanning speed. Further, the light beam is intensified as the scanning speed increases. Though the duration of the irradiation with the light beam is reduced with the increasing scanning speed, the amount of energy for recording one dot is maintained constant by intensifying the light beam as described, whereby the dot density can be maintained constant.
Abstract:
A laser beam emitted from a laser beam generator is modulated by a laser beam modulator depending on an image to be recorded, and then converted into a linearly polarized light beam having a predetermined direction of polarization by a polarization switcher. The linearly polarized light beam is then converted into a circularly polarized light beam by a quarter-wave plate. The circularly polarized light beam is converted by a quarter-wave plate of a rotatable unit into a linearly polarized light beam, which is applied to a polarization beam splitter. If the linearly polarized light beam is an s-polarized light beam, then the laser beam is reflected by the polarization beam splitter toward a recording medium. If the linearly polarized light beam is a p-polarized light beam, then the laser beam passes through the polarization beam splitter. The laser beam passes through a quarter-wave plate and is reflected by a convex mirror and then by the polarization beam splitter toward the recording medium. The laser beam is thus applied substantially in its entirety to the recording medium for thereby recording a two-dimensional image efficiently on the recording medium.
Abstract:
A light beam recording device. A light beam irradiated from a light beam irradiating device is scanned onto an object to be illuminated, which is provided in a vicinity of a focal position, while being focused by a scanning optical system. A converging member is disposed on an optical path between the light beam irradiating device and the scanning optical system, and converges a light beam which is incident on the converging member. An optical path changing device is disposed in a vicinity of a converging position of a light beam which is converged by the converging member, and changes an optical path of the light beam.
Abstract:
A method and apparatus for scanning and exposing in which m laser beams which are arranged in an array so that part of a adjacent laser beams overlap on the photosensitive surface, are main-scanned in a direction intersecting the line along which the laser beams are arranged, while being sub-scanned in the direction in which they are arrayed, to carry out a two-dimensional exposure. The power of at least one of the mth laser beam for the Nth main scanning and the first laser beam for the (N+1)th main scanning is changed, or the distance between the mth laser beam for the Nth main scanning and the first laser beam for the (N+1)th main scanning is changed, to correct density unevenness at the overlapping portion of the mth and the first laser beams.
Abstract:
A method of and an apparatus for projecting an incident laser beam into a broad contact-type light amplifier. The laser beam is projected after the intensity distribution of the laser beam is made to coincide with the electromagnetic field distribution in the fundamental mode of the light amplifier. Since only the fundamental mode is used as the propagation mode of the light amplifier, a Gaussian beam amplified by the light amplifier is emitted. Consequently, the laser beam emitted from the light amplifier can be made into a several-micron spot by condensing the laser beam to a diffraction limit.