Abstract:
It is an object of the present invention to provide a lighting device for vehicles which does not irradiate any dazzling rays of light to oncoming vehicles.According to the present invention, a lighting device for vehicles for irradiating rays of light forward vehicle with a predetermined light distribution comprises light transmitting means, one end of which is disposed at light source, for transmitting rays of light of the light source from the one end to the other end, and lens means, a rear of which is disposed close to the other end of the light transmitting means, for irradiating rays of light forward vehicle from front side thereof, the lens means comprises a first lens, a rear of which is close to one end of the other end of the light transmitting means, a second lens, a rear of which is close to the other end of the other end of the light transmitting means, having a light distribution which is different from that of the first lens, and a spacer defining a gap between the first lens and the second lens so as to form a reflecting layer.
Abstract:
In order to prevent a driver from feeling strange when he looks at a boundary of illumination between a hot illumination zone and flat illumination zone, a light-grading optical member is provided. A headlight for a vehicle includes a fiberoptic cable and a lamp member for forming incident light beams into a desired illumination profile to illuminate portions in front of the vehicle. The lamp member is composed of a light conducting member to define the profile of the illumination by introducing the light beams from the fiberoptic cable, a first lens member for forming the hot illumination zone and a second lens member for forming the flat illumination zone. The optical member or means for refracting a portion of the light beams is formed on a periphery of the first lens member or on a periphery of the light conducting member, whereby a difference in brightness between the hot and flat illumination zones is reduced.
Abstract:
In an illuminating device for vehicles in which a light conductor made of light transmissive material having a predetermined light refractive index is placed between an outgoing light end of an optical cable and an incident light end of a lens body. The light conductor is shaped so as to cover the whole surface of the outgoing light end of the optical cable practically as well as to have an outgoing light surface shaped suitable for defining an illumination pattern. The lens body has the incident light end shaped to cover satisfactorily the outgoing light surface of the light conductor. Thus, the luminous flux from the outgoing light surface is emitted forward based on its shape as luminous flux of the desired light distribution without the waste of the luminous flux.
Abstract:
A height sensor has an exciting coil for generating an alternating magnetic field and a pickup coil for detecting the magnetic field. The exciting coil is fixed to a suspension arm and the pickup coil is fixed to a body so as to face each other. Distance between these coils is determined by a voltage outputted from the pickup coil, and a height of the vehicle is calculated from the distance between these coils by taking the mounting position of the pickup coil on the suspension arm into account. The height sensor is readily fixed and a detection accuracy is improved by setting the mounting position of the pickup coil in a range of {fraction (1/10)} to ½ of a length of the suspension arm from a connecting portion between the suspension arm and the body.
Abstract:
A lens body for providing a flat light distribution has a pair of reflective surfaces inclined vertically and symmetrically and used as an illuminating device for a vehicle which does not cause glaring against the on-coming vehicles traveling on the opposite lane. Light entering from an incident surface is emitted from an outgoing surface after being reflected. Areas illuminated by the pair of reflective surfaces are formed having a substantially horizontal cut line CL at the right and left sides of an illuminated area by direct light emitted from the outgoing surface directly without being reflected on the reflective surfaces.
Abstract:
A vent line (440) for establishing communication between the interior of headlamps (500) and at least a blower (300) is formed integrally with a front end panel (400). The vent line (440) makes up a duct member (441) leading from each of the headlamps (500) to the blower (300). A light controller (560) is assembled by being fixed on the panel (400) in such a manner as to be located at the air inlet (442) of the duct member (441) (vent line (440)).
Abstract:
A mounting structure for mounting a discharge lamp lighting device is arranged to directly connect a discharge lamp provided in a headlight unit to a connector provided in the discharge lamp lighting device. The headlight unit includes a reflector, and the mounting structure comprises a holder for holding the discharge lamp, wherein the holder includes a holder securing portion directly connected to the reflector and is secured to the reflector via the holder securing portion. The discharge lamp is secured to the reflector via the holder. The mounting structure further comprises a securing member directly connected to the reflector for securing the discharge lamp lighting device to the reflector. The holder and the securing member are separated from each other and the discharge lamp lighting device is secured to the reflector via the securing member.
Abstract:
In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor. Filtering corresponding to a control mode according to the acceleration is fixed and is not frequently switched unless the constant speed state of the vehicle continues for a predetermined time. The pitch angle may be calculated on the basis of the vehicle rear height value by using a prediction expression which is divided into a plurality of regions of vehicle postures according to loading conditions of an occupant load and a trunk load in correspondence with the vehicle type. The pitch angle may be updated when the vehicle enters a constant speed driving mode, i.e., stable driving mode, so that even when one trip is not finished the error is cancelled.
Abstract:
An automobile headlamp apparatus comprising a direct current driven discharge lamp surrounded by a concave main mirror which confronts a concave spheroidal sub mirror. The main mirror has a first focus point located substantially at a center of a discharge gap of the discharge lamp between the cathode and anode thereof, while the sub mirror has first and second focus points and an opening therein around the optical axis of the sub mirror. The first and second focus points of the sub mirror are arranged to be substantially on the tips of the cathode and anode of the discharge lamp, respectively. A convex lens may be included to condense the light from the main mirror, wherein the main mirror has a second focus point at a focus point of the convex lens. A shade forming a favorable illumination pattern may be included. In one embodiment, a diagonal mirror is inserted between the main mirror and the convex lens to bend the light from the discharge lamp. An optical light guide may be provided between the diagonal mirror and the convex lens, and/or the discharge tube may be attached to a completed assembly of the main mirror and sub-mirror.
Abstract:
The rear vehicle height HR is detected by the vehicle height sensor as vehicle inclination information by a CPU. Based on the rear vehicle height HR, the inclination angle of the headlight optical axis direction is computed with an inherent control constant corresponding to vehicle specifications preset by a specification discrimination signal. Then, the headlight optical axis direction is adjusted with reference to the pitch angle.