摘要:
The present invention provides a blue (blue-green) phosphor that has sufficient emission intensity in the wavelength region around 490 nm and that has high emission luminance at a temperature region reached during LED operation. The present invention also provides a white light-emitting device that uses a high-luminance green phosphor having an emission peak wavelength of 535 nm or greater and that has improved bright blue reproducibility.A phosphor having a chemical composition of general formula [1] has sufficient emission intensity in a wavelength region around 490 nm, and a white light-emitting device that uses such a phosphor has improved bright blue reproducibility. (Sr,Ca)aBabEux(PO4)cXd [1] (In general formula [1], X is Cl; c, d and x are numbers satisfying 2.7≦c≦3.3, 0.9≦d≦1.1 and 0.3≦x≦1.2; and a and b satisfy the conditions a+b=5−x and 0.12≦b/(a+b)≦0.4.).
摘要:
The invention aims at providing controllable parameters that are correlated with special color rendering index R9, and at providing a white-light emitting semiconductor device having a high R9 value obtained through optimization of such parameters. The white-light emitting semiconductor device is provided with a phosphor as a light-emitting material and with a light-emitting semiconductor element as an excitation source of the phosphor. The phosphor includes at least a green phosphor and a wide-band red phosphor. In the white light-emitting semiconductor device, an intensity at wavelength 640 nm of an emission spectrum which has been normalized with respect to luminous flux is 100-110% of the intensity at wavelength 640 nm of a spectrum of standard light for color rendering evaluation which has been normalized with respect to luminous flux.
摘要:
A white light-emitting semiconductor device having improved reproducibility of bright red. The device outputs light having a blue component, a green component, and a red component. Each of the light components (blue, green, and red) is based on a light-emitting semiconductor element and/or a phosphor that absorbs light emitted by a light-emitting semiconductor element and emits light through wavelength conversion. The outputted light has a spectrum which has a maximum wavelength in the range of 615-645 nm, and the intensity at a wavelength of 580 nm of the outputted light, which has been normalized with respect to luminous flux, is 80-100% of the intensity at a wavelength of 580 nm of standard light for color rendering evaluation, which has been normalized with respect to luminous flux.
摘要:
A white light-emitting semiconductor device having improved reproducibility of bright red. The device outputs light having a blue component, a green component, and a red component. Each of the light components (blue, green, and red) consists of a light-emitting semiconductor element and/or a phosphor that absorbs light emitted by a light-emitting semiconductor element and emits light through wavelength conversion. The outputted light has a spectrum which has a maximum wavelength in the range of 615-645 nm, and the intensity at a wavelength of 580 nm of the outputted light, which has been normalized with respect to luminous flux, is 80-100% of the intensity at a wavelength of 580 nm of standard light for color rendering evaluation, which has been normalized with respect to luminous flux.
摘要:
A light control apparatus for a LED light-emitting device comprises a driving current supply unit supplying an AC current as a driving current via a pair of terminals to the LED light-emitting device including a set of LED elements having mutually different light emission wavelength regions connected in parallel while providing opposite polarities and the pair of terminals provided to supply the driving current to the set of LED elements; an individual amount defining unit defining a positive driving current amount and a negative driving current amount respectively to be supplied to the LED light-emitting device in a positive half cycle and a negative half cycle included in one cycle of the AC current respectively.
摘要:
A light control apparatus for a LED light-emitting device comprises a driving current supply unit supplying an AC current as a driving current via a pair of terminals to the LED light-emitting device including a set of LED elements having mutually different light emission wavelength regions connected in parallel while providing opposite polarities and the pair of terminals provided to supply the driving current to the set of LED elements; an individual amount defining unit defining a positive driving current amount and a negative driving current amount respectively to be supplied to the LED light-emitting device in a positive half cycle and a negative half cycle included in one cycle of the AC current respectively.