摘要:
A single crystal pulling apparatus comprising: a gas tight container, a double crucible for storing a semiconductor melt inside the gas tight container comprising an outer crucible and an inner crucible which are connected at a lower edge, and source material supply means for adding source material to the semiconductor melt at a position between the outer crucible and the inner crucible, characterized in that a flow restriction member is provided inside the semiconductor melt region between the outer crucible and the inner crucible for restricting the flow of the semiconductor melt.
摘要:
The invention relates to a single crystal pulling apparatus comprising; an outer crucible 11 positioned inside a chamber (gas tight container) 2, for storing a semiconductor melt 21, and an inner crucible 30 comprising a cylindrical partition body, mounted inside the outer crucible 11 to form a double crucible, and wherein a single crystal of semiconductor 26 is pulled from the semiconductor melt 21 stored inside the inner crucible 30. With this arrangement, the inner crucible 30 is made from quartz and comprises an inside layer A, an outside layer C, and an intermediate layer B which lies between the inside layer A and the outside layer C, and the intermediate layer B is made from quartz with a larger gas bubble content than the quartz which makes up the inside layer A and the outside layer C of the inner crucible 30.
摘要:
A single crystal pulling method employing; a gas tight container, a double crucible for storing a semiconductor melt inside the gas tight container comprising an inter-connected outer crucible and inner crucible, and a source material supply tube suspended from an upper portion of the gas tight container and positioned so that a granulated or powdered source material can be added from a lower end opening thereof to the semiconductor melt inside the outer crucible, with the source material being injected into the source material supply tube together with an inert gas flowing towards the enclosed container, characterized in that said source material is injected under conditions where the flow rate N (1/min.multidot.cm.sup.2) of the inert gas is within the range 0.0048P+0.0264
摘要:
The principal construction of a single crystal pulling apparatus involves a chamber (gas tight chamber) inside of which is a double crucible 3 for storing a semiconductor melt 21, comprising an outer crucible 11 and an inner crucible 12 communicated with each other, and a source material supply tube 5 suspended from an upper portion of the chamber, and positioned so that granular source material 8 can be introduced from a lower end opening 5a thereof into the semiconductor melt 21 between the outer crucible 11 and the inner crucible 12. An incline portion 13 is provided at a lower end of the source material supply tube 5 on the inner crucible 12 side, for introducing source material 8 discharging from the lower end opening 5a to the semiconductor melt 21 in the vicinity of the side wall of the outer crucible 11. The entry point of the source material 8 is as far as possible from the inner crucible 12, and close to the outer wall of the outer crucible 11, and hence the added source material 8 is melted rapidly by heat from a heater surrounding the outer crucible 11, and any gas bubbles generated as a result of the introduction of the source material 8, are unlikely infuse into the inner crucible 12.
摘要:
An improvement in the safety, ease and speed with which the operation of attaching a crucible 1 to a support base 10 of a single crystal pulling apparatus can be completed is provided. With the method of attaching the crucible 1 to the support base 10, the support base 10 is divided into a support base bottom portion 11 and a support base drum portion 12 which is fitted to the bottom portion 11, and the crucible 1 is mounted on the support base bottom portion 11. The support base 10 is then assembled by fitting the support base drum portion 12 to the support base bottom portion 11.
摘要:
An annular member hoist apparatus which lifts an annular member and carries and positions the annular member at a predetermined location by a carrier apparatus fitted with an elevator mechanism, including a suspension member suspended from the elevator mechanism, and a plurality of support arms which extend out radially in a horizontal plane from the suspension member. Each of the support arms has an engagement tip portion for supporting the annular member from inside the annular member.
摘要:
A single crystal pulling apparatus comprises: a chamber; a crucible disposed within the chamber for containing a melt; a water-cooling means disposed within the chamber in such a manner as surrounding a single crystal pulled up from the melt in the crucible; water piping for feeding cooling water to and discharging the same from the water-cooling means; and supporting arms connected to the chamber for supporting the water-cooling means, wherein the supporting arms are disposed between the single crystal and the water piping. According to this configuration, the supporting arms can prevent the water piping from being damaged in the event of fall and collapse of the single crystal due to failure of the seed neck portion or in the event of rupture of the single crystal due to thermal stress, for instance.
摘要:
A single crystal pulling apparatus comprises: a chamber; a crucible disposed within the chamber for containing a melt; a water-cooling means disposed within the chamber in such a manner as surrounding a single crystal pulled up from the melt in the crucible; water piping for feeding cooling water to and discharging the same from the water-cooling means; and supporting arms connected to the chamber for supporting the water-cooling means, wherein the supporting arms are disposed between the single crystal and the water piping. According to this configuration, the supporting arms can prevent the water piping from being damaged in the event of fall and collapse of the single crystal due to failure of the seed neck portion or in the event of rupture of the single crystal due to thermal stress, for instance.
摘要:
By determining a control direction of a pulling-up velocity without using a position or a width of an OSF region as an index, a subsequent pulling-up velocity profile is fed back and adjusted. A silicon single crystal ingot that does not include a COP and a dislocation cluster is grown by a CZ method, a silicon wafer is sliced from the silicon single crystal ingot, reactive ion etching is performed on the silicon wafer in an as-grown state, and a grown-in defect including silicon oxide is exposed as a protrusion on an etching surface. A growing condition in subsequent growing is fed back and adjusted on the basis of an exposed protrusion generation region. As a result, feedback with respect to a nearest batch can be performed without performing heat treatment to expose a defect.