摘要:
The present invention relates to a method for manufacturing a perpendicular recording magnetic head. The method for manufacturing a perpendicular recording magnetic head according to the present invention includes first to third steps. At the first step, a main magnetic pole layer is formed on a foundation layer. At the second step, a main magnetic pole forming mask whose recording-medium-facing surface is of an inverted trapezoidal shape is formed on the main magnetic pole layer. At the third step, a main magnetic pole whose recording-medium-facing surface is of an inverted trapezoidal shape is formed by performing ion milling on a laminated structure including the foundation layer and the main magnetic pole layer from a direction which makes a given angle with a lamination direction according to a bevel angle of the inverted trapezoidal shape.
摘要:
In a perpendicular magnetic write head manufacturing method a magnetic layer is formed on a substrate. On the magnetic layer, first and second nonmagnetic layers are formed with different materials. A mask pattern is formed on the second nonmagnetic layer, and the second nonmagnetic layer in a region not covered with the mask pattern is removed. Thereby, the patterned second nonmagnetic layer is formed while leaving the first nonmagnetic layer. The mask pattern is removed and a milling process is selectively performed on the first nonmagnetic layer and the magnetic layer with the patterned second nonmagnetic layer as a mask to remove all of the first nonmagnetic layer in an exposed region and to dig down the magnetic layer in the exposed region, thereby forming a main magnetic pole layer having an inclined part whose thickness decreases with distance from an edge position of the patterned second nonmagnetic layer.
摘要:
In a perpendicular magnetic write head manufacturing method a magnetic layer is formed on a substrate. On the magnetic layer, first and second nonmagnetic layers are formed with different materials. A mask pattern is formed on the second nonmagnetic layer, and the second nonmagnetic layer in a region not covered with the mask pattern is removed Thereby, the patterned second nonmagnetic layer is formed while leaving the first nonmagnetic layer. The mask pattern is removed and a milling process is selectively performed on the first nonmagnetic layer and the magnetic layer with the patterned second nonmagnetic layer as a mask to remove all of the first nonmagnetic layer in an exposed region and to dig down the magnetic layer in the exposed region, thereby forming a main magnetic pole layer having an inclined part whose thickness decreases with distance from an edge position of the patterned second nonmagnetic layer.
摘要:
The present invention relates to a method for forming a dry etching mask. A plurality of aluminum oxide films are sequentially sputtered on a material to be dry etched in such a manner that etching rate with respect to reactive ion etching increases toward a lower layer. On a laminated film of the plurality of aluminum oxide films, there is formed a first mask that has etching resistance with respect to the reactive ion etching. Reactive ion etching is performed from above the first mask to form a second mask of the laminated film.
摘要:
The present invention relates to a method for forming a dry etching mask. A plurality of aluminum oxide films are sequentially sputtered on a material to be dry etched in such a manner that etching rate with respect to reactive ion etching increases toward a lower layer. On a laminated film of the plurality of aluminum oxide films, there is formed a first mask that has etching resistance with respect to the reactive ion etching. Reactive ion etching is performed from above the first mask to form a second mask of the laminated film.
摘要:
A thin film magnetic head includes a main magnetic pole layer conducting a magnetic flux to the recording medium so that the recording medium an be magnetized in a direction orthogonal to a surface thereof; a return yoke layer disposed on a trailing side of the main magnetic pole layer; an intermediate protective layer partially disposed on a magnetic shield layer; and a thermal expansion suppressing layer having an edge located on the intermediate protective layer and being in contact with the return yoke layer in an area where the intermediate protective layer is not formed. If the thin film magnetic head is affected by ambient temperature environment, the thermal expansion suppressing layer suppresses the shift of the main magnetic pole layer and the return yoke layer toward the air bearing surface. This suppresses thermal protrusion from occurring on the thin film magnetic head due to ambient temperature environment.
摘要:
The thin film magnetic head includes a main magnetic pole layer conducting a magnetic flux to the recording medium so that the recording medium an be magnetized in a direction orthogonal to a surface thereof; a return yoke layer disposed on a trailing side of the main magnetic pole layer; an intermediate protective layer partially disposed on a magnetic shield layer; and a thermal expansion suppressing layer having an edge located on the intermediate protective layer and being in contact with the return yoke layer in an area where the intermediate protective layer is not formed. If the thin film magnetic head is affected by ambient temperature environment, the thermal expansion suppressing layer suppresses the shift of the main magnetic pole layer and the return yoke layer toward the air bearing surface. This suppresses thermal protrusion from occurring on the thin film magnetic head due to ambient temperature environment.
摘要:
A perpendicular recording thin-film magnetic head comprises a main magnetic pole having a tip main magnetic pole part extending in a height direction from a medium-opposing surface and a base main magnetic pole part connected to the tip main magnetic pole part on a side opposite from the medium-opposing surface side and wider than the tip main magnetic pole part in a track width direction; a return yoke extending in the height direction from the medium-opposing surface and magnetically coupling with the base main magnetic pole part at a position distanced from the medium-opposing surface in the height direction, while opposing the tip main magnetic pole part through a write gap layer in a bit length direction in the medium-opposing surface; and a main magnetic pole adjacent magnetic shield layer extending along at least part of side faces of the main magnetic pole other than the medium-opposing surface as seen in a laminating direction, while holding a nonmagnetic layer between the main magnetic pole and the main magnetic pole adjacent magnetic shield layer.
摘要:
A magnetic head includes a pole layer, a first and a second shield disposed to sandwich the pole layer, and a nonmagnetic layer disposed around the first shield. The pole layer includes a first portion having an end face located in a medium facing surface, and a second portion that is located farther from the medium facing surface than is the first portion. The second portion is greater in thickness than the first portion. A bottom surface of the second portion is located closer to a substrate than is a bottom surface of the first portion. The first shield has a first top surface portion opposed to the bottom surface of the first portion with the first gap layer in between. The nonmagnetic layer has a second top surface portion opposed to the bottom surface of the second portion with the first gap layer in between. A difference in level is formed between the first and the second top surface portion such that the second top surface portion is located closer to the substrate than is the first top surface portion.
摘要:
A perpendicular recording thin-film magnetic head comprises a main magnetic pole having a tip main magnetic pole part extending in a height direction from a medium-opposing surface and a base main magnetic pole part connected to the tip main magnetic pole part on a side opposite from the medium-opposing surface side and wider than the tip main magnetic pole part in a track width direction; a return yoke extending in the height direction from the medium-opposing surface and magnetically coupling with the base main magnetic pole part at a position distanced from the medium-opposing surface in the height direction, while opposing the tip main magnetic pole part through a write gap layer in a bit length direction in the medium-opposing surface; and a main magnetic pole adjacent magnetic shield layer extending along at least part of side faces of the main magnetic pole other than the medium-opposing surface as seen in a laminating direction, while holding a nonmagnetic layer between the main magnetic pole and the main magnetic pole adjacent magnetic shield layer.