摘要:
An expander of the invention includes: n-number of rotary type fluid mechanisms (where n is an integer equal to or greater than 2), a first suction port (41b) for sucking a working fluid into a suction-side space (55a) of a first fluid mechanism (41), a communication port (43a) connecting a discharge-side space (55b) of a k-th fluid mechanism (where k is an integer from 1 to n−1) and a (k+1)-th suction-side space (56a) to form a single space, and a discharge port (51a) for discharging the working fluid from the discharge-side space of an n-th fluid mechanism. The expander further includes a second suction port (72f) being capable of changing its connecting position to the suction-side space (55a) of the first fluid mechanism (41), for sucking the working fluid into the suction-side space (55a).
摘要:
A rotary-type fluid machine (10A) includes: a closed casing (1) having a bottom portion utilized as an oil reservoir, a rotary-type fluid mechanism (expansion mechanism) (15) that is provided in an upper portion of the closed casing (1) and in which working chambers (32, 33) in cylinders (22, 24) are partitioned into a suction side working chamber and a discharge side working chamber by vanes (28, 29), a shaft (5) having therein an oil supply passage (51) for supplying oil to the fluid mechanism (15), the shaft being connected to the fluid mechanism (15) and extending an oil reservoir (45), an oil pump (52) provided at a lower portion of the shaft (5), an oil retaining portion (65) for retaining oil, which is pumped up by the oil pump (52) and supplied through the oil supply passage (51), in a surrounding region around the fluid mechanism (15) to allow the partitioning members of the fluid mechanism (15) to be lubricated, the oil retaining portion formed so that the liquid level of the oil retained therein is positioned higher the lower face of the partitioning members (28, 29).
摘要:
A rotary-type fluid machine (10A) includes: a closed casing (1) having a bottom portion utilized as an oil reservoir, a rotary-type fluid mechanism (expansion mechanism) (15) that is provided in an upper portion of the closed casing (1) and in which working chambers (32, 33) in cylinders (22, 24) are partitioned into a suction side working chamber and a discharge side working chamber by vanes (28, 29), a shaft (5) having therein an oil supply passage (51) for supplying oil to the fluid mechanism (15), the shaft being connected to the fluid mechanism (15) and extending an oil reservoir (45), an oil pump (52) provided at a lower portion of the shaft (5), an oil retaining portion (65) for retaining oil, which is pumped up by the oil pump (52) and supplied through the oil supply passage (51), in a surrounding region around the fluid mechanism (15) to allow the partitioning members of the fluid mechanism (15) to be lubricated, the oil retaining portion formed so that the liquid level of the oil retained therein is positioned higher the lower face of the partitioning members (28, 29).
摘要:
An integrally formed vane (301) is disposed slidably in a vane groove (205a) of a first cylinder (205) and a vane groove (206a) of a second cylinder (206). A cut-out (301a) with a width substantially equal to the thickness of an intermediate plate (304) is provided in the vane (301), which is divided by this cut-out (301a) into a first vane portion (301b) whose leading end makes contact with a first piston (209) at its leading end and a second vane portion (301c) whose leading end makes contact with a second piston (210). This configuration allows the first vane portion (301b) to be pushed toward the first piston (209) side by the pressure difference acting on the second vane portion (301c) and makes it possible to keep a contact state between the first vane portion (301b) and the first piston (209), even when no pushing force toward the first piston (209) side that results from the pressure difference acts on the first vane portion (301b).
摘要:
A rotary-type fluid machine (10A) includes: a closed casing (1) having a bottom portion utilized as an oil reservoir, a rotary-type fluid mechanism (expansion mechanism) (15) that is provided in an upper portion of the closed casing (1) and in which working chambers (32, 33) in cylinders (22, 24) are partitioned into a suction side working chamber and a discharge side working chamber by vanes (28, 29), a shaft (5) having therein an oil supply passage (51) for supplying oil to the fluid mechanism (15), the shaft being connected to the fluid mechanism (15) and extending an oil reservoir (45), an oil pump (52) provided at a lower portion of the shaft (5), an oil retaining portion (65) for retaining oil, which is pumped up by the oil pump (52) and supplied through the oil supply passage (51), in a surrounding region around the fluid mechanism (15) to allow the partitioning members of the fluid mechanism (15) to be lubricated, the oil retaining portion formed so that the liquid level of the oil retained therein is positioned higher the lower face of the partitioning members (28, 29).
摘要:
An integrally formed vane (301) is disposed slidably in a vane groove (205a) of a first cylinder (205) and a vane groove (206a) of a second cylinder (206). A cut-out (301a) with a width substantially equal to the thickness of an intermediate plate (304) is provided in the vane (301), which is divided by this cut-out (301a) into a first vane portion (301b) whose leading end makes contact with a first piston (209) at its leading end and a second vane portion (301c) whose leading end makes contact with a second piston (210). This configuration allows the first vane portion (301b) to be pushed toward the first piston (209) side by the pressure difference acting on the second vane portion (301c) and makes it possible to keep a contact state between the first vane portion (301b) and the first piston (209), even when no pushing force toward the first piston (209) side that results from the pressure difference acts on the first vane portion (301b).
摘要:
An oil supply passage (68) is formed inside a rotating shaft (56) of a compression mechanism (21). An oil supply passage (38) is formed inside a rotating shaft (36) of an expansion mechanism (22). A boss portion (81) is provided at a lower end of the rotating shaft (56). A shaft portion (82) that is engaged in the boss portion (81) is provided at an upper end of the rotating shaft (36). The circumference of a coupling part (80), which includes the boss portion (81) and the shaft portion (82) is covered by an upper bearing (42) of the expansion mechanism (22). The upper bearing (42) supports both the rotating shaft (36) and the rotating shaft (56).
摘要:
An oil supply passage (68) is formed inside a rotating shaft (56) of a compression mechanism (21). An oil supply passage (38) is formed inside a rotating shaft (36) of an expansion mechanism (22). A boss portion (81) is provided at a lower end of the rotating shaft (56). A shaft portion (82) that is engaged in the boss portion (81) is provided at an upper end of the rotating shaft (36). The circumference of a coupling part (80), which includes the boss portion (81) and the shaft portion (82) is covered by an upper bearing (42) of the expansion mechanism (22). The upper bearing (42) supports both the rotating shaft (36) and the rotating shaft (56).
摘要:
The expander-compressor unit 70 includes the closed casing 1, the expansion mechanism 4 disposed in the closed casing 1 so that a surrounding space thereof is filled with the oil, the compression mechanism 2 disposed in the closed casing 1 so as to be positioned higher than the oil level, the shaft 5 for coupling the compression mechanism and the expansion mechanism 4 to each other, and the oil flow suppressing member 50 disposed in the surrounding space of the expansion mechanism 4 so that the space 55a filled with the oil is formed between the expansion mechanism 4 and the oil flow suppressing member 50. Thereby the flow of the oil filling the inner reserving space 55a is suppressed, and thus, heat transfer from the high temperature oil to the low temperature expansion mechanism can be reduced.
摘要:
An expander of the present invention includes a plurality of suction ports for guiding a working fluid to a working chamber, and the plurality of suction ports includes a first suction port (71) and a second suction port (73) with a differential pressure valve (72). The ratio R2 of time length of an expansion process of expanding the working fluid in the working chamber to time length of a suction process in which the working fluid is sucked into the working chamber (55a) from the first suction port (71) and the second suction port (73) by opening the differential pressure valve (72) is smaller than the ratio R1 of the time length of the expansion process to a suction process in which the working fluid is sucked into the working chamber (55a) only from the first suction port (71) by closing the differential pressure valve (72).