摘要:
In an exhaust gas purification device for an internal combustion engine, a NOX occluding and reducing catalyst is disposed in the exhaust gas passage of an engine. The NOX occluding and reducing catalyst absorbs NOX in the exhaust gas when the air-fuel ratio of the exhaust gas is at a lean air-fuel ratio and releases and reduces NOX when the air-fuel ratio of the exhaust gas is at a rich air-fuel ratio. The air-fuel ratio of the exhaust gas flowing out from the catalyst is detected by an air-fuel ratio sensor disposed in the exhaust gas passage downstream of the catalyst. When the air-fuel ratio of the exhaust gas flowing into the catalyst is changed from a rich air-fuel ratio to a lean air-fuel ratio, the air-fuel ratio of the exhaust gas flowing out from the catalyst stays at a stoichiometric air-fuel ratio before it changes to a lean air-fuel ratio. The length of the period in which the air-fuel ratio of the exhaust gas flowing out from the catalyst stays at a stoichiometric air-fuel ratio corresponds to the magnitude of the ability of the NOX occluding and reducing catalyst as a reducing catalyst. Thus, by measuring the length of the stoichiometric air-fuel ratio period of the exhaust gas flowing out from the NOX occluding and reducing catalyst, the ability of the NOX occluding and reducing catalyst as a reducing catalyst can be precisely evaluated.
摘要:
In an exhaust gas purification device for an internal combustion engine, a NO.sub.X occluding and reducing catalyst is disposed in the exhaust gas passage of an engine. The NO.sub.X occluding and reducing catalyst absorbs NO.sub.X in the exhaust gas when the air-fuel ratio of the exhaust gas is at a lean air-fuel ratio and releases and reduces NO.sub.X when the air-fuel ratio of the exhaust gas is at a rich air-fuel ratio. The air-fuel ratio of the exhaust gas flowing out from the catalyst is detected by an air-fuel ratio sensor disposed in the exhaust gas passage downstream of the catalyst. When the air-fuel ratio of the exhaust gas flowing into the catalyst is changed from a rich air-fuel ratio to a lean air-fuel ratio, the air-fuel ratio of the exhaust gas flowing out from the catalyst stays at a stoichiometric air-fuel ratio before it changes to a lean air-fuel ratio. The length of the period in which the air-fuel ratio of the exhaust gas flowing out from the catalyst stays at a stoichiometric air-fuel ratio corresponds to the magnitude of the ability of the NO.sub.X occluding and reducing catalyst as a reducing catalyst. Thus, by measuring the length of the stoichiometric air-fuel ratio period of the exhaust gas flowing out from the NO.sub.X occluding and reducing catalyst, the ability of the NO.sub.X occluding and reducing catalyst as a reducing catalyst can be precisely evaluated.
摘要:
In an exhaust gas purification device for an internal combustion engine, a three-way catalyst and a NO.sub.X occluding and reducing catalyst (a NORC) are disposed in the exhaust gas passage of an engine in this order from the upstream side. A first air-fuel ratio sensor is disposed in the exhaust gas passage between the three-way catalyst and the NORC, and a second air-fuel ratio sensor is disposed in the exhaust gas passage downstream of the NORC. An engine electronic control unit (ECU) changes the operating air-fuel ratio of the engine from a lean air-fuel ratio to a rich air-fuel ratio and a rich air-fuel ratio to a lean air-fuel ratio in order to evaluate the abilities of the three-way catalyst and the NORC. The ECU evaluates the catalytic abilities based on the output of the first air-fuel ratio sensor when the engine air-fuel ratio is changed. Further, the ECU evaluates the catalytic ability and the NO.sub.X absorbing capacity of the NORC based on the outputs of the first and the second air-fuel ratio sensor when the engine operating air-fuel ratio is changed. The evaluation of the abilities of both the three-way catalyst and the NORC in one successive changing operation of the engine operating air-fuel ratio is based on only the outputs of the first and the second air-fuel ratio sensor.
摘要:
Provision is made for a catalyst that is arranged in an exhaust passage of an internal combustion engine and has an oxidation function, downstream side temperature detection means that detects the temperature of an exhaust gas at a downstream side from the catalyst, and addition means that adds a reducing agent into the exhaust gas from an upstream side from the catalyst, wherein there are also provided correlation value calculation means that calculates a correlation value which is correlated with an amount of change of the temperature detected by the downstream side temperature detection means when the reducing agent is added by the addition means and when a transient operation of the internal combustion engine is carried out, and determination means that determines a deterioration of the catalyst by making a comparison between the correlation value and a threshold value which indicates the deterioration of the catalyst.
摘要:
An accurate determination of deterioration of a NOx storage reduction catalyst. A supply device supplies a reducing agent to the NOx catalyst to change an air fuel ratio of an exhaust gas passing through the NOx catalyst, an NH3 detection device detects NH3 in the exhaust gas at the downstream side of the NOx catalyst, a control device adjusts an amount of the reducing agent so that the air fuel ratio of the exhaust gas becomes a predetermined rich air fuel ratio, and a determination device makes a determination that the NOx catalyst has deteriorated, when a detected value of the NH3 detection device becomes equal to or greater than a threshold value, at the time of supplying the reducing agent while adjusting the amount of the reducing agent so that the air fuel ratio of the exhaust gas becomes the predetermined rich air fuel ratio.
摘要:
An inter-cylinder air-fuel ratio imbalance determination apparatus (determination apparatus) according to the present invention obtains, as an “EGR supplying state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt of a detected air-fuel ratio abyfs represented by an output value of an air-fuel ratio sensor when an EGR gas is being supplied, and obtains, as an “EGR stop state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt when an EGR gas supply is being stopped. The determination apparatus obtains an “EGR-causing imbalance determination parameter Pegr” by subtracting the EGR stop state imbalance determination parameter Poff from the EGR supplying state imbalance determination parameter Pon, and determines that an inter-cylinder air-fuel ratio imbalance state has occurred due to the supply of the EGR gas when the parameter Pegr is larger than a threshold Pegrth.
摘要:
An apparatus for determining an air-fuel ratio imbalance among cylinders based on an output value of an air-fuel ratio sensor, an imbalance determination parameter which becomes larger or smaller as a difference among air-fuel ratios becomes larger, and performs determining an air-fuel ratio imbalance among cylinders based on a result of a comparison between the imbalance determination parameter and a imbalance determination threshold. The determining apparatus calculates a purge correction coefficient which compensates for a change in the air-fuel ratio due to an evaporated fuel gas which is generated in a fuel tank, while the evaporated fuel gas is being introduced into an intake passage, and corrects a fuel injection amount with the purge correction coefficient FPG.
摘要:
A monitoring apparatus including a catalytic converter, an upstream air-fuel ratio sensor, and a downstream air-fuel ratio sensor; calculates a sub feedback amount to have an air-fuel ratio represented based on an output value of the downstream air-fuel ratio sensor coincide with a stoichiometric air-fuel ratio; and controls an fuel injection amount based on an output value of the upstream air-fuel ratio sensor and the sub feedback amount, in such a manner that an air-fuel ratio of a mixture supplied to an engine coincides with the stoichiometric air-fuel ratio.
摘要:
A lithium-ion secondary battery with excellent durability is provided using a two-phase coexisting compound as a positive electrode active material. This lithium-ion secondary battery is provided with an electrode body having a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte solution containing a lithium salt in an organic solvent. The positive electrode active material is mainly composed of a two-phase coexisting compound containing lithium, and also contains particles of a lithium-transition metal oxide with a layered structure. The particles of the layered oxide have an average particle diameter of 2 μm or less, and the percentage content thereof in the positive electrode active material is 5 mass % or less.
摘要:
The present invention provides a mechanical seal sliding member with high lubricating characteristics, in which the coefficient of friction and the temperature of sliding surfaces are lowered and stabilized without excessive leakage. In the mechanical seal sliding member of the present invention, on the sliding surface 2, a plurality of grating sections 5 are formed separately in each of which a plurality of linear shape ridge portions parallel to each other are formed in a predetermined region with a predetermined pitch. The linear shape ridge portions of the plurality of grating sections are formed as inclined at a predetermined angle to a sliding direction of the sliding surfaces 2. Such periodic structure can improve the lubricating characteristics for lubrication. By irradiating a linearly polarized femtosecond laser with irradiating energy adjacent to a process threshold level to a material surface, a fine periodic structure with a cycle interval comparable with a laser wavelength and with a ridge depth half or less than the laser wavelength can be formed by a self-structuring manner.