摘要:
A battery control system controls an external charging unit in a vehicle including a vehicle body, engine, motors, secondary battery, and the external charging unit, and includes a degradation detecting unit that detects degradation of the secondary battery, during charging of the second battery by the external charging unit.
摘要:
A negative electrode active material layer (243) of a lithium-ion secondary battery (100) has a region (243a) facing a positive electrode active material layer (223) and regions (243b1), (243b2) not facing the positive electrode active material layer (223). Therein, the equilibrium potential Ea of the region (243a) facing the positive electrode active material layer (223) is higher than the equilibrium potential Eb of the regions (243b1), (243b2) not facing the positive electrode active material layer (223) (Ea>Eb).
摘要:
A lithium-ion secondary battery with excellent durability is provided using a two-phase coexisting compound as a positive electrode active material. This lithium-ion secondary battery is provided with an electrode body having a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte solution containing a lithium salt in an organic solvent. The positive electrode active material is mainly composed of a two-phase coexisting compound containing lithium, and also contains particles of a lithium-transition metal oxide with a layered structure. The particles of the layered oxide have an average particle diameter of 2 μm or less, and the percentage content thereof in the positive electrode active material is 5 mass % or less.
摘要:
Provided is a secondary battery system which can accurately detect a state of a secondary battery system (such as a secondary battery state and a secondary battery system failure). The secondary battery system (6) includes dV/dQ calculation means which calculates a dV/dQ value as a ratio of a change amount dV of a battery voltage V of a secondary battery (100) against a change amount dQ of an accumulation amount Q when the accumulation amount Q of the secondary battery (100) is changed. The secondary battery system (6) detects the state of the secondary battery system (6) by using the dV/dQ value.
摘要:
A lithium ion battery before pre-doping includes: a negative electrode member before initial charge having a negative active material before initial charge; a positive electrode member; an electrolyte body; a battery case; and a lithium ion supply body formed by a lithium compound capable of emitting lithium ions when positive voltage is applied to it. The lithium ion supply body is arranged so that it is at least partially in contact with the inner exposed surface of the battery case. The negative electrode member before pre-doping is electrically insulated from the metal case member. The lithium ion supply body and the negative active material before initial charge are respectively in contact with the electrolyte body.
摘要:
Improved polymer-based materials are described, for example for use as an electrode binder in a fuel cell. A fuel cell according to an example of the present invention comprises a first electrode including a catalyst and an electrode binder, a second electrode, and an electrolyte located between the first electrode and the second electrode. The electrolyte may be a proton-exchange membrane (PEM). The electrode binder includes one or more polymers, such as a polyphosphazene.
摘要:
The lithium secondary battery positive electrode provided by the present invention has a positive electrode collector and a positive active material layer formed on the collector. The positive active material layer is composed of a matrix phase containing at least one particulate positive active material and at least one binder, and an aggregate phase dispersed in the matrix phase, constituted by aggregation of at least one particulate positive active material and containing substantially no binder.
摘要:
Provided is an assembled battery with which a wasted space can be reduced and having a large energy density. The assembled battery including a first laminated battery provided to a plurality of current collectors, a second laminated battery provided to a plurality of current collectors, and a connecting portion that bundles and connects the plurality of current collectors provided to the first laminated battery and the plurality of current collectors provided to the second laminated battery, wherein the plurality of current collectors provide to the first laminated battery and the plurality of current collectors provided to the second laminated battery are laminated and bundled in the connecting portion, and a lamination direction of the plurality of current collectors in the connecting portion and a lamination direction of the plurality of current collectors in each laminated battery are intersecting with each other.
摘要:
A positive electrode for a lithium secondary battery provided by the present invention includes a positive electrode active material layer having a particulate positive electrode active material constituted by a composite oxide containing lithium and at least one type of transition metal element, and at least one type of binding material constituted by a polymer compound having at least one functional group, and a conductive carbonaceous coating film is formed on a surface of the positive electrode active material. Further, the polymer compound constituting the binding material is molecularly bound to carbon atoms constituting the carbonaceous coating film of at least a part of the positive electrode active material, whereby a composite compound is formed from the polymer compound molecularly bound to the carbon atoms and a carbon network constituting the carbonaceous coating film containing the carbon atoms.
摘要:
An object is to provide a method of charging and maintaining a lithium ion secondary battery which method is capable of preventing a decrease in the capacity of the battery. Another object is to provide a battery system capable of preventing a decrease in battery capacity, and a vehicle and a battery-mounted device which have such a battery system mounted therein. A method of charging and maintaining lithium ion secondary batteries 101 using positive active material particles 135 made from a two-phase coexistence type positive active material PM in a positive electrode plate 130 includes an overcharge step S7 for charging the lithium ion secondary batteries to bring their SOC (State of Charge) SC into an overcharge SOC not higher than 100% but higher than a target SOC, a return discharge step S8 for discharging, after the overcharge step, the lithium ion secondary batteries to make their SOC equal to the target SOC, and a maintaining step S10.