摘要:
An automatic transmission includes a multi-speed transmission gear mechanism having an input shaft, an output shaft and a plurality of friction coupling elements. A hydraulic control system selectively supplies a hydraulic pressure to the friction coupling elements, thereby selectively applying the friction coupling elements to cause the transmission gear mechanism to shift to a speed which is determined according to a predetermined shift pattern. The control system sets a target hydraulic pressure to be applied to the friction coupling elements according to the kind of the shift to be effected and the engine load, and, when it is detected that the transmission gear mechanism is to make a backout upshift due to reduction in the engine load, increases the target hydraulic pressure by an amount which is determined according to the throttle opening and the turbine speed.
摘要:
A fluid coupling for an automatic transmission includes an input element, an output element and a lockup clutch and is connected to a transmission mechanism. The lockup clutch can engage and disengage to operatively connect and disconnect the input element and the output element with and from each other. Further the lockup clutch can engage in slipping engagement to connect the input element and the output element in such a way as to allow the input element and the output element to rotate relative to each other to some extent. A control system causes the lockup clutch to engage in slipping engagement with a substantially fixed engaging force when the transmission mechanism upshifts while the lockup clutch is in slipping engagement, and to disengage when the transmission mechanism downshifts while the lockup clutch is in slipping engagement.
摘要:
An automatic transmission of a vehicle has a transmission gear mechanism having at least a lower gear-speed and a higher gear-speed, and first and second friction coupling members which are applied or released by hydraulic pressures applied thereto. The first friction coupling member is kept applied when the transmission is in the lower gear-speed and the second friction coupling member is kept applied when the transmission is in the higher gear-speed. A control system for the automatic transmission has a hydraulic control circuit which controls the hydraulic pressure applied to the respective friction coupling members, thereby changing the condition of application of the friction coupling members and causing the automatic transmission to shift, and a control unit which controls the hydraulic control circuit according to the running condition of the vehicle. The control unit normally makes lower the hydraulic pressure applied to the second friction coupling member when it is kept applied than that applied to the first friction coupling member when it is kept applied by a predetermined value. When the vehicle is starting with the transmission in the higher gear-speed, the control unit inhibits itself from making lower the hydraulic pressure applied to the second friction coupling member when it is kept applied than that applied to the first friction coupling member when it is kept applied.
摘要:
A lockup torque converter of an automatic transmission for an automotive vehicle consists of an impeller connected to an engine, a turbine connected to the automatic transmission, and a lockup clutch disposed between first and second pressure chambers formed in a housing of said lockup torque converter for locking and releasing the lockup torque converter. A control unit supplies a hydraulic pressure into the first pressure chamber and withdraw a hydraulic pressure chamber from the second pressure chamber or reversely so as to actuate the lockup clutch to lock or unlock the lockup torque converter, respectively. A pressure regulating unit develops a pressure difference between the first and second pressure chambers when the shifting of the automatic transmission is detected, thereby causing the lockup clutch to allow the lockup torque converter to slip in accordance with certain conditions.
摘要:
A control apparatus for an automatic transmission has a control unit which, when a selector lever is shifted from a forward drive gear range to a reverse gear range when the vehicle speed is not lower than a first predetermined speed, prevents the gear stage from being changed to that corresponding to the reverse gear range until the vehicle speed has fallen to a speed not greater than a second predetermined speed lower than the first predetermined speed. The control unit allows the gear stage to be changed to that corresponding to the reverse gear range if the selector lever is shifted to the reverse gear range when the vehicle speed is lower than the first predetermined speed. This control apparatus, therefore, ensures that the gear stage can be changed to that corresponding to the reverse gear range only when the driver intentionally shifts the selector lever from one of the forward drive gear ranges to the reverse gear range.
摘要:
A hydraulic pressure control system for an automatic transmission includes a multiple transmission gear mechanism having a plurality of gear stages and frictional elements for switching power transmitting paths in the transmission gear mechanism, a hydraulic control mechanism for controlling engagement and disengagement of the frictional elements to establish one of said gear stages, and a line pressure control device for controlling line pressure of the hydraulic control mechanism. A speed detecting device for detects a speed of an input element of the transmission gear mechanism during shift operation of the shift gear stage in the transmission gear mechanism, and a compensation device compensates the line pressure in accordance with signal from the speed detecting device. The line pressure is compensated by a learning control to reduce a torque shock due to the shift operation.
摘要:
A line pressure control system for an automatic transmission, including a multiple shift stage transmission gear mechanism having a plurality of power transmitting paths of different speed ratios, has a line pressure control device for controlling a line pressure for frictional elements of the transmission gear mechanism associated with each other to establish a desirable shift gear stage. A shift period detector detects a time period for a shift operation, accomplished in terms of operation of the frictional elements controlled by the line pressure. A first compensating device controls the line pressure in terms of a learing control in a manner such that the time period for the shift operation is controlled to a target value. An abnormality detecting device detects an abrupt change, such as a turbine speed rise or, depression, or a driving torque depression in an operating condition of the transmission. A second compensating device compensates the line pressure prior to compensation of the line pressure by the first compensating device when the abrupt change is detected. The torque shock can be effectively obviated during a shift operation.
摘要:
An automatic transmission has a transmission gear mechanism and a plurality of friction coupling members which are applied or released by hydraulic pressures applied thereto under the control of a hydraulic control system. The control system includes a hydraulic control circuit which controls the hydraulic pressure fed to or discharged from the respective friction coupling member, thereby changing the condition of application of the friction coupling members and causing the automatic transmission to shift. The plurality of friction coupling members includes first and second friction coupling members the conditions of application of which are changed during gear shifting from a first predetermined gear speed to a second predetermined gear speed. The first and second friction coupling members are fed with the hydraulic pressure respectively through first and second hydraulic passages. The hydraulic control circuit is provided with a pressure regulator valve which receives the pressure in the first hydraulic passage as a pilot pressure and regulates the hydraulic pressure to be fed to the second friction coupling member through the second hydraulic passage according to the pilot pressure.
摘要:
A control system for a torque converter includes a lock-up clutch provided in a torque converter for connecting an input member and an output member of the torque converter directly. An engaging and disengaging hydraulic device controls an engaging and disengaging action of the lock-up clutch. A shift valve provided with a first and second spools in series controls introduction of a driving hydraulic pressure into the hydraulic device. The first spool of the shift valve is subjected to a first hydraulic pressure at one end, while the second spool is subjected to a second hydraulic pressure at the other end. The first and second spools are subjected to a third hydraulic pressure therebetween. The control system further includes a first control device for controlling the first hydraulic pressure, a second control device for controlling the second hydraulic pressure, an adjusting valve for adjusting the driving hydraulic pressure introduced into the engaging or disengaging hydraulic device, and a third control device for controlling a hydraulic pressure for controlling the adjusting valve. Converter, lock-up and slip conditions of the torque converter can be selectively established by switching shift positions of the single shift valve.
摘要:
A slip control system for a torque converter of an automatic transmission includes lock-up clutch device provided in a torque converter for connecting an input and output members of the torque converter directly. A torque detecting device detects a transmitted torque introduced into the output member of the torque converter, a speed difference setting device sets a target value of a rotation speed difference between the input and output members, a pressure difference control device controls a pressure difference between a releasing chamber and an engaging chamber of the lock-up clutch device, based on a predetermined relationship between the input torque and the speed difference so as to accomplish the target value of the speed difference, and a speed difference detecting device detects an actual speed difference between the input and output members. In a preferred embodiment of the invention, a compensatng device compensates the target value of the speed difference set by the speed difference setting device based on a deviation between the actual and target speed difference. A responsive slip control, therefore, can be accomplished.