摘要:
In order to achieve the increased efficiency of an organic light-emitting element, there is a need to reduce the influence of non-radiative recombination of electron-hole pairs except for surface plasmon polariton excitation, to convert most of exciton energy into visible light, and to tremendously improve the luminous efficiency of the organic light-emitting element. An organic light-emitting element according to the present invention includes a reflective electrode, a transparent electrode, and a light-emitting layer placed between the reflective electrode and the transparent electrode, and the organic light-emitting element is configured so that the light-emitting layer contains a host and a first dopant, and for the first dopant, one of the vertical component and horizontal component of the average value for transition dipole moments with respect to a substrate surface is larger than the other of the components.
摘要:
In order to achieve the increased efficiency of an organic light-emitting element, there is a need to reduce the influence of non-radiative recombination of electron-hole pairs except for surface plasmon polariton excitation, to convert most of exciton energy into visible light, and to tremendously improve the luminous efficiency of the organic light-emitting element. An organic light-emitting element according to the present invention includes a reflective electrode, a transparent electrode, and a light-emitting layer placed between the reflective electrode and the transparent electrode, and the organic light-emitting element is configured so that the light-emitting layer contains a host and a first dopant, and for the first dopant, one of the vertical component and horizontal component of the average value for transition dipole moments with respect to a substrate surface is larger than the other of the components.
摘要:
In order to improve an external quantum efficiency of an organic light-emitting element, a first light extraction layer is formed over the surface of a second substrate on the side where the second substrate is present, a second light extraction layer is formed over the surface of the second substrate on the other side, the first and second light extraction layers contain fine particles and a binder, the average particle diameter of the fine particles contained in the first and second light extraction layers are 0.05 μm or more and 2 μm or less and 1 μm or more and 10 μm or less, respectively, and an optical length L1 between the emission point of the light emitting layer and a first electrode satisfies (2m−155/180)λ0/4/cos 35°≦L1≦(2m−155/180)λ0/4/cos 50°, where λ0 is a center emission wavelength of the light emitting layer and m is an integer of 1 or more.
摘要:
A plasma display apparatus having a priming discharge region PDC partitioned from a display discharge cell DDC, by a traverse rib, at a side where the second electrode between the display discharge cell DDC adjacent in a row direction is adjacent; a second longitudinal rib partitioning the priming discharge region PDC; a third longitudinal rib, further partitioning a region partitioned by the second longitudinal rib into two sections; a convex electrode; and a gap connecting the display discharge cell DDC and the priming discharge cell PDC, wherein a sum of a width in a line direction of a nearly rectangular space region containing adjacent two priming discharge cells PDCs, and a pattern width of the second longitudinal rib is designed larger than a sum of a width in the row direction and a pattern width of the traverse rib.
摘要:
A plasma display device includes: a front substrate and a back substrate facing each other and interposing a discharge gap; and a plurality of discharge cells formed by the front substrate and the back substrate, wherein a mixture gas containing Xe is filled in the discharge gap, and a red, green, or blue phosphor materials is arranged in each of the discharge cells. The plasma display device performs a reset operation by, at least, a weak discharge. A crystal material is arranged in the red, green, and blue phosphor materials so as to make weak discharge firing voltages for reset discharges in respective discharge cells uniform.
摘要:
There is provided a PDP, in which the deterioration in the address discharge timelag with age is suppressed, which is bright, has guaranteed life, can stably be driven, is of low power consumption, high definition, and high image quality. There is provided a pair of sustaining discharge electrodes on the front substrate extending in a row direction for forming a display line, a floating electrode not connected to an external electrode is arranged on the same substrate as the pair of sustaining discharge electrode so as not to pass through a center line extending in a column direction and dividing the discharge cell into two equal parts, thereby intensifying the local potential of an area of the MgO surface not influenced by the sputtering by the sustaining discharge in the address discharge, promoting the electron emission from this area, and suppressing the deterioration of the address discharge timelag.
摘要:
An analyzing device of the present invention is provided with a flow chamber that a fluid including magnetic particles associated with a labeling substance flows from a fluid inlet to a fluid outlet, magnetic trap means to apply a magnetic field for trapping the magnetic particles to the fluid in the flow chamber, a working electrode and a counter electrode to apply a voltage to the magnetic particles trapped by the magnetic trap means, and to emit a luminescence, a light detection element to detect a luminescence derived from the labeling substance on the magnetic particles trapped in the flow chamber, and regulating means to regulate a region that the light detection element detects the luminescence derived from the labeling substance on a part of magnetic particles of them trapped by the magnetic trap means.
摘要:
A plasma display apparatus having a priming discharge region PDC partitioned from a display discharge cell DDC, by a traverse rib, at a side where the second electrode between the display discharge cell DDC adjacent in a row direction is adjacent; a second longitudinal rib partitioning the priming discharge region PDC; a third longitudinal rib, further partitioning a region partitioned by the second longitudinal rib into two sections; a convex electrode; and a gap connecting the display discharge cell DDC and the priming discharge cell PDC, wherein a sum of a width in a line direction of a nearly rectangular space region containing adjacent two priming discharge cells PDCs, and a pattern width of the second longitudinal rib is designed larger than a sum of a width in the row direction and a pattern width of the traverse rib.
摘要:
A high-definition, high-quality, and high-contrast PDP that features high brightness, guaranteed long life, and stable driving, is provided by improving the time-dependent degradation of address discharge delay. The PDP includes: a front substrate having bus electrodes, and sustain discharge electrodes extending in a lateral direction of the bus electrodes to form display lines; a back substrate having address electrodes facing the sustain discharge electrodes in the lateral direction of the bus electrodes; and discharge cells formed between the substrates. Each of the discharge cells includes a sustain discharge cell and a priming discharge cell, in which a protruding electrode is formed to extend in a direction opposite to the discharge gap from the bus electrode, and a predetermined space is provided between the two cells to supply priming. The shape and size of the space are optimized so that the sustain discharge does not spread to the address discharge cell through the space.