摘要:
[Object] To provide a low-cost production method for a heat transportation device with which efficient production with a small number of steps is possible.[Solving Means] A capillary member (5) having a larger thickness than a frame member (2) is mounted on an inner surface (11) of a lower plate member (1). Subsequently, the frame member (2) is mounted on the inner surface (11) of the lower plate member (1), and an upper plate member (3) is mounted on the capillary member (5). Due to a difference between the thickness of the capillary member (5) and the thickness of the frame member (2), a squashing amount (G) is provided between the frame member (2) and the upper plate member (3). Then, the lower plate member (1) and the upper plate member (3) are diffusion-bonded with the frame member (2). At this time, the capillary member (5) is compressed by an amount corresponding to the squashing amount (G). Since the capillary member (5) has elasticity, a pressure (P) is partially absorbed, and a pressure (P′) smaller than the pressure (P) is applied to the lower plate member (1) from the capillary member (5). By the pressure (P′), the inner surface (11) of the lower plate member (1) and the capillary member (5) are diffusion-bonded.
摘要:
A method of manufacturing a heat transport device including the steps of stacking a first plate, a capillary member, and a second plate by interposing the capillary member between the first plate and the second plate, the first plate and the second plate constituting a container of a heat transport device configured to transport heat using phase change in a working fluid; and diffusion-bonding the first plate and the second plate while deforming the second plate to create an internal space in the container for storing the capillary member.
摘要:
[Object] To provide a heat transport device manufacturing method and a heat transport device that has a high hermeticity and is manufactured without increasing a load applied at a time of performing diffusion bonding.[Solving Means] A bonding surface (1a) of an upper member (1) that is subjected to diffusion bonding to a bonding surface (21) of a frame member (2) is formed into a convex shape, which can make a contact area of the bonding surface (1a) and the bonding surface (21) small. Therefore, a pressure (load per unit area) applied to the bonding surfaces (1a and 21) is increased, and thus the diffusion bonding of the bonding surfaces (1a and 21) is performed by a high pressure. Similarly, a bonding surface (3a) of a lower member (3) and a bonding surface (23) of the frame member (2) are also subjected to the diffusion bonding by a high pressure. As a result, a heat transport device (100) having a high hermeticity can be manufactured without increasing an entire load (F) applied at the time of the diffusion bonding.
摘要:
A heat transport device includes a working fluid, an evaporation portion, a condenser portion, a flow path portion, a concave portion, and a protrusion portion. The evaporation portion causes the working fluid to evaporate from a liquid phase to a vapor phase. The condenser portion communicates with the evaporation portion, and causes the working fluid to condense from the vapor phase to the liquid phase. The flow path portion causes the working fluid condensed in the condenser portion to the liquid phase to flow to the evaporation portion. The concave portion is provided on at least one of the evaporation portion and the flow path portion, in which the liquid-phase working fluid flows. The protrusion portion is made of nanomaterial protruding from an inner wall side surface of the concave portion such that the protrusion portion partially covers an opening surface of the concave portion.
摘要:
In electron holography observation using a transmission electron microscope, searching of conditions of an electron optical condition which are necessary for realizing a requested spatial resolution is sophisticated and for persons unaccustomed to operation of the electron microscope, the observation is time consuming work. In addition to the fundamental electron microscope proper, an input unit for inputting a spatial resolution requested in the holography observation, a calculation unit for calculating positions of electron biprism and specimen necessary for realizing the requested spatial resolution from the inputted value and parameters characteristic of the device and mechanisms for moving the two positions for realizing the obtained calculation results are provided.
摘要:
The present invention provides a MEMS device and methods for manufacturing thereof, in which planarizing the surface of a beam and improving performance of the MEMS device are aimed. In addition, the present invention provides a light modulation device and a GLV device in which this MEMS device is used, and methods for manufacturing thereof; and further, a laser display using this GLV device. According to the present invention, a MEMS device includes a substrate side electrode and a beam that is disposed so as to oppose the substrate side electrode and is driven by electrostatic attraction force or electrostatic repulsion force that acts between the substrate side electrode and the driving side electrode, with the substrate side electrode being formed of a single-crystalline semiconductor layer.
摘要:
In electron holography observation using a transmission electron microscope, searching of conditions of an electron optical condition which are necessary for realizing a requested spatial resolution is sophisticated and for persons unaccustomed to operation of the electron microscope, the observation is time consuming work. In addition to the fundamental electron microscope proper, an input unit for inputting a spatial resolution requested in the holography observation, a calculation unit for calculating positions of electron biprism and specimen necessary for realizing the requested spatial resolution from the inputted value and parameters characteristic of the device and mechanisms for moving the two positions for realizing the obtained calculation results are provided.
摘要:
A multi-biprism electron interferometer is configured so as to arrange a plurality of biprisms in an imaging optical system of a specimen. This generally requires a plurality of ports for the electron biprisms in a magnifying optical system from an objective lens onward and also requires electromagnetic lenses, which are combined with the respective electron biprisms and operated in association therewith, to provide the interference optical system with a degree of freedom. As a result, not only the electron biprism ports but also electromagnetic lenses need to be additionally configured in the imaging optical system of a conventional electron microscope so as to display the performance as the multi-biprism electron interferometer. The present invention arranges an upper electron biprism upstream of the specimen in the traveling direction of the electron beam and forms an image of the electron biprism on the specimen (object plane) using an imaging action of a pre-field of the objective lens. A double-biprism interference optical system is constructed of a lower electron biprism disposed downstream of the objective lens up to the first image plane of the specimen. No new electromagnetic lens needs to be added in this optical system.
摘要:
A transmission electron microscope has a means for inputting a spatial size or distance d desired to be observed by the operator, calculates high contrast of an image based on this value and an observing condition which can reduce the influence of a false image superimposed, and desirably modulates an accelerating voltage of the electron microscope based thereon.
摘要:
A transmission electron microscope has a means for inputting a spatial size or distance d desired to be observed by the operator, calculates high contrast of an image based on this value and an observing condition which can reduce the influence of a false image superimposed, and desirably modulates an accelerating voltage of the electron microscope based thereon.