摘要:
The present invention provides a synchronous semiconductor device suitable for improving the efficiency of application of electrical stresses to the device, an inspection system and an inspection method thereof in order to efficiently carrying out a burn-in stress test. A command latch circuit having an access command input will output a low-level pulse in synchronism with an external clock. The pulse will pass through a NAND gate of test mode sequence circuit and a common NAND gate to output a low-level internal precharge signal, which will reset a word line activating signal from the control circuit. Simultaneously, an internal precharge signal passing through the NAND gate will be delayed by an internal timer a predetermined period of time to output through the NAND gate a low-level internal active signal, which will set a word line activating signal from the control circuit.
摘要:
The present invention provides a synchronous semiconductor device suitable for improving the efficiency of application of electrical stresses to the device, an inspection system and an inspection method thereof in order to efficiently carrying out a burn-in stress test. A command latch circuit having an access command input will output a low-level pulse in synchronism with an external clock. The pulse will pass through a NAND gate of test mode sequence circuit and a common NAND gate to output a low-level internal precharge signal, which will reset a word line activating signal from the control circuit. Simultaneously, an internal precharge signal passing through the NAND gate will be delayed by an internal timer a predetermined period of time to output through the NAND gate a low-level internal active signal, which will set a word line activating signal from the control circuit.
摘要:
The present invention provides a synchronous semiconductor device suitable for improving the efficiency of application of electrical stresses to the device, an inspection system and an inspection method thereof in order to efficiently carry out a burn-in stress test. A command latch circuit having an access command input will output a low-level pulse in synchronism with an external clock. The pulse will pass through a NAND gate of test mode sequence circuit and a common NAND gate to output a low-level internal precharge signal, which will resent a word line activating signal from the control circuit. Simultaneously, an internal precharge signal passing through the NAND gate will be delayed by an internal timer a predetermined period of time to output through the NAND gate a low-level internal active signal, which will set a word line activating signal from the control circuit.
摘要:
The present invention provides a synchronous semiconductor device suitable for improving the efficiency of application of electrical stresses to the device, an inspection system and an inspection method thereof in order to efficiently carrying out a burn-in stress test. A command latch circuit having an access command input will output a low-level pulse in synchronism with an external clock. The pulse will pass through a NAND gate of test mode sequence circuit and a common NAND gate to output a low-level internal precharge signal, which will reset a word line activating signal from the control circuit. Simultaneously, an internal precharge signal passing through the NAND gate will be delayed by an internal timer a predetermined period of time to output through the NAND gate a low-level internal active signal, which will set a word line activating signal from the control circuit.
摘要:
The present invention provides a synchronous semiconductor device suitable for improving the efficiency of application of electrical stresses to the device, an inspection system and an inspection method thereof in order to efficiently carrying out a burn-in stress test. A command latch circuit having an access command input will output a low-level pulse in synchronism with an external clock. The pulse will pass through a NAND gate of test mode sequence circuit and a common NAND gate to output a low-level internal precharge signal, which will reset a word line activating signal from the control circuit. Simultaneously, an internal precharge signal passing through the NAND gate will be delayed by an internal timer a predetermined period of time to output through the NAND gate a low-level internal active signal, which will set a word line activating signal from the control circuit.
摘要:
The present invention provides a synchronous semiconductor device suitable for improving the efficiency of application of electrical stresses to the device, an inspection system and an inspection method thereof in order to efficiently carrying out a burn-in stress test. A command latch circuit having an access command input will output a low-level pulse in synchronism with an external clock. The pulse will pass through a NAND gate of test mode sequence circuit and a common NAND gate to output a low-level internal precharge signal, which will reset a word line activating signal from the control circuit. Simultaneously, an internal precharge signal passing through the NAND gate will be delayed by an internal timer a predetermined period of time to output through the NAND gate a low-level internal active signal, which will set a word line activating signal from the control circuit.
摘要:
There is intended to provide a semiconductor integrated circuit device capable of lowering the power consumption during data-write operation, enhancing operation speed, and reducing noises for stable operation. In the semiconductor integrated circuit, an active signal ACT to be inputted to a sense amplifier signal circuit SC1 is latched by a command latch circuit and outputted to a terminal N11. The terminal N11 outputs a control signal EDC1 via a timing adjusting circuit. The control signal EDC1 works to output a sense amplifier activating signal LE via a timing adjusting circuit and output buffer circuit and at the same time, the control signal EDC1 is outputted to a column switch signal circuit CS1. From the Column switch signal circuit CS1, a pulse signal is outputted via input of a control signal ACL, a pulse output circuit, and a terminal N13. In a logical circuit, AND processing is conducted between the pulse signal and an inversion signal of the control signal EDC1. Through a decode circuit, a resultant signal is outputted as switch signal CL, or CLM.
摘要:
Provided is a semiconductor integrated circuit device capable of, when data is written into a memory cell, fixing adjacent complimentary bit lines to a predetermined voltage, thereby reducing an effect of a write noise for a readout operation of the adjacent cells, making it possible to ensure stable operation. An address signal is inputted to a bit line short signal circuit and a column switch signal circuit, and the corresponding bit line short signal BRS0 or BRS1 and column switch signal CL01 or CL11 are selected. Complimentary bit lines /BL1, /BL2 or bit lines BL1 and BL2 in which a memory cell is not connected according to the bit line short signals BRS0 and BRS1 are selected altogether, these bit lines are fixed to a precharge voltage VPR, and a write noise is shielded. The column switch signal CL01 or CL11 makes conductive the corresponding column switches, and the selected bit line BL1, BL2, /BL1, or /BL2 is connected to a data bus DB or /DB.
摘要:
This invention provides a semiconductor memory device with a shift redundancy circuit which has a shortened redundancy operation. The semiconductor memory device of the present invention includes a plurality of shift switches and a changeover signal generating circuit connected to the shift switches. The changeover signal generating circuit may have a plurality of signal generating blocks including a first signal generating block for generating a first group of changeover signals and a second signal generating block for generating a second group of changeover signals.
摘要:
A semiconductor integrated circuit that acquires an external signal precisely in a high speed operation. The semiconductor integrated circuit includes an internal circuit for acquiring an external signal in response to an address acquisition signal. A first holding circuit is connected to the internal circuit to hold the external signal for a predetermined period in response to a holding signal and provide the held external signal to the internal circuit. A control circuit is connected to the first holding circuit to generate the holding signal using the address acquisition signal.