摘要:
An electrical connection structure that is able to electrically connect wiring to a biopolymer, a production method of the electrical connection structure, and an electric wiring method which is able to perform wiring on a nanometer-scale. A first aspect of the production method of the present invention uses a carbon nanotube as an electrode, and makes the carbon nanotube contact the biopolymer. A second aspect of the production method applies electric current between the electrode and the biopolymer of the first aspect. The electrical connection structure of the present invention comprises at least the electrode formed by the carbon nanotube and the biopolymer, wherein the electrode is in contact with the biopolymer. In the electric wiring method of the present invention, the electrode formed by the carbon nanotube contacts the biopolymer to complete an electrical connection.
摘要:
An electrical connection structure that is able to electrically connect wiring to a biopolymer, a production method of the electrical connection structure, and an electric wiring method which is able to perform wiring on a nanometer-scale. A first aspect of the production method of the present invention uses a carbon nanotube as an electrode, and makes the carbon nanotube contact the biopolymer. A second aspect of the production method applies electric current between the electrode and the biopolymer of the first aspect. The electrical connection structure of the present invention comprises at least the electrode formed by the carbon nanotube and the biopolymer, wherein the electrode is in contact with the biopolymer. In the electric wiring method of the present invention, the electrode formed by the carbon nanotube contacts the biopolymer to complete an electrical connection.
摘要:
The present invention provides a structure composed substantially only of carbon nanotubes each having a functional group, the structure being obtained by using a liquid mix characterized by including: the carbon nanotubes; and a crosslinking agent capable of prompting a crosslinking reaction with the functional group. The structure has a network structure in which the carbon nanotubes are surely connected to each other. The present invention also provides a method of forming the structure.
摘要:
The present invention provides an organic conductor comprising a deoxyribonucleic acid (DNA) and an electric charge-donating material bonded to the deoxyribonucleic acid, and an organic conductor comprising at least two DNAs; and an electric charge-transfer substance bonding to each base of the two DNAs.
摘要:
An electrical connection structure that is able to electrically connect wiring to a biopolymer, a production method of the electrical connection structure, and an electric wiring method which is able to perform wiring on a nanometer-scale. A first aspect of the production method of the present invention uses a carbon nanotube as an electrode, and makes the carbon nanotube contact the biopolymer. A second aspect of the production method applies electric current between the electrode and the biopolymer of the first aspect. The electrical connection structure of the present invention comprises at least the electrode formed by the carbon nanotube and the biopolymer, wherein the electrode is in contact with the biopolymer. In the electric wiring method of the present invention, the electrode formed by the carbon nanotube contacts the biopolymer to complete an electrical connection.
摘要:
There is provided a transistor, which includes a deoxyribonucleic acid molecule or a deoxyribonucleic acid molecule aggregate as a part of structural materials, has a source electrode member, a drain electrode member and a gate electrode member, in which at least one of three electrode members connects to the deoxyribonucleic acid molecule or deoxyribonucleic acid molecule aggregate.
摘要:
The present invention provides an organic conductor comprising a deoxyribonucleic acid (DNA) and an electric charge-donating material bonded to the deoxyribonucleic acid, and an organic conductor comprising at least two DNAs; and an electric charge-transfer substance bonding to each base of the two DNAs.
摘要:
The present invention provides an organic conductor comprising a deoxyribonucleic acid (DNA) and an electric charge-donating material bonded to the deoxyribonucleic acid, and an organic conductor comprising at least two DNAs; and an electric charge-transfer substance bonding to each base of the two DNAs.
摘要:
An electrical connection structure that is able to electrically connect wiring to a biopolymer, a production method of the electrical connection structure, and an electric wiring method which is able to perform wiring on a nanometer-scale. A first aspect of the production method of the present invention uses a carbon nanotube as an electrode, and makes the carbon nanotube contact the biopolymer. A second aspect of the production method applies electric current between the electrode and the biopolymer of the first aspect. The electrical connection structure of the present invention comprises at least the electrode formed by the carbon nanotube and the biopolymer, wherein the electrode is in contact with the biopolymer. In the electric wiring method of the present invention, the electrode formed by the carbon nanotube contacts the biopolymer to complete an electrical connection.
摘要:
An electrical connection structure that is able to electrically connect wiring to a biopolymer, a production method of the electrical connection structure, and an electric wiring method which is able to perform wiring on a nanometer-scale. A first aspect of the production method of the present invention uses a carbon nanotube as an electrode, and makes the carbon nanotube contact the biopolymer. A second aspect of the production method applies electric current between the electrode and the biopolymer of the first aspect. The electrical connection structure of the present invention comprises at least the electrode formed by the carbon nanotube and the biopolymer, wherein the electrode is in contact with the biopolymer. In the electric wiring method of the present invention, the electrode formed by the carbon nanotube contacts the biopolymer to complete an electrical connection.