摘要:
The invention relates to a tunnel erasing device for a non-volatile semiconductor memory device comprising a source region and a drain region, a floating gate electrode having a part superposed on at least one of them through a gate insulating layer, and a control gate electrode disposed over the floating gate electrode through an interlayer insulating layer and is characterized as having a preliminary erasing operation in which a voltage is so applied to at least one of the source or drain region, with the control gate electrode grounded, that a relatively lower voltage than a predetermined voltage is applied preliminarily prior to applying thereto the predetermined voltage.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor integrated device having a non-volatile memory element or memory cell of a single-element type in a non-volatile memory circuit employing a field effect transistor which has, in addition to a floating gate electrode for storage of information and a controlling gate electrode, a source which includes a heavily doped region having a depth into the semiconductor substrate extending from the major surface thereof which is large. The single-element type field effect transistor, furthermore, has a drain which includes a lightly doped region which has a depth extending into the semiconductor substrate from the major surface thereof which is small.
摘要:
A method of manufacturing a semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions. By this method, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but, however, a lower dose of arsenic is introduced in the formation of the second semiconductor region. The first semiconductor region is formed to have a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. Carriers stored in the floating gate electrode are transferred between the floating gate electrode and the first semiconductor region by tunneling through the insulating film beneath the floating gate electrode. The method further features the formation of MISFETs of peripheral circuits.
摘要:
A method of manufacturing a semiconductor memory device having nonvolatile memory cells of a single-element type. The method provides for the formation of a floating gate electrode insulatedly on a main surface of a semiconductor substrate and a control gate electrode on the floating gate via a second gate insulating film. Also by this method, an impurity, for example, arsenic, is introduced in self-alignment with the pair of opposing end sides of the control gate electrode to form both the first and second semiconductor regions but, however, a lower dose of arsenic is introduced in the formation of the second semiconductor region. In accordance with the scheme, the first semiconductor region is formed to have a junction depth greater than the junction depth associated with the second semiconductor region and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. Moreover, carriers which are stored in the floating gate electrode are transferred therefrom to the first semiconductor region, for example, during an erase operation of the memory, by tunneling through the insulating film beneath the floating gate electrode. The method also calls for the formation of MISFETs associated with peripheral circuitry of the memory.
摘要:
A semiconductor integrated device having a non-volatile memory element or memory cell of a single-element type in a non-volatile memory circuit employing a field effect transistor which has, in addition to a floating gate electrode for storage of information and a controlling gate electrode, a source which includes a heavily doped region having a depth into the semiconductor substrate extending from the major surface thereof which is large. The single-element type field effect transistor, furthermore, has a drain which includes a lightly doped region which has a depth extending into the semiconductor substrate from the major surface thereof which is small.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.