Abstract:
A control method for a lower limb rehabilitation apparatus for rehabilitation of the lower limbs of a user includes the step of putting an exoskeleton on the lower limbs of the user, the step of setting a trigger condition, the step of using EMG muscle sensors to detect EMG signals from specific muscles of the user when the user is performing specific actions, the step of judging whether the sensing result meets the trigger condition, and the step of re-setting the triggering condition without moving the exoskeleton if the sensing result does not meet the trigger condition, or, the step of triggering a motion generator to provide a control signal to a control unit for controlling the exoskeleton in moving the lower limbs of the user to perform specific actions if the sensing result meets the trigger condition.
Abstract:
An upper extremity rehabilitation device includes: a base, a rotary shaft unit, a rotation drive unit, a brake unit, a linear move unit, a hand gripping assembly, a first and a second connecting rods. The rotary shaft unit is pivoted to the base. The rotation drive unit is disposed on the base and includes a drive portion connected to the first shaft portion. The brake unit includes an outer pipe disposed on the rotary shaft, and an inner pipe movably disposed in the outer pipe. The linear move unit includes a linear seat pivoted to the second shaft portion, and a linear platform movably disposed on the linear seat. The hand gripping assembly is disposed on the linear platform. The first connecting rod is pivoted to the brake unit. The second connecting rod is pivoted to the first connecting rod and the linear seat.
Abstract:
An adaptive active training system includes a motion module, a sensing module and a control module. The motion module includes a training unit and a motor connected to the training unit. The motor is configured to bring the training unit to move along a motion trajectory. The sensing module is configured to sense a physiological signal of a user when the user uses the training unit. The control module is connected to the motion module and the sensing module. The control module is configured to calculate a position of the training unit on the motion trajectory, obtain a threshold value corresponding to the position based on a motion model, and determine whether a magnitude of the physiological signal is greater than the threshold value.
Abstract:
An upper limb training system adapted to an upper limb of a user includes a main body and a control unit. The main body includes a training unit and a plurality of motors. The training unit is connected to the upper limb. The plurality of motors are coupled to the training unit. The control unit is electrically connected to the training unit and the plurality of motors and calculates a plurality of torque intervals respectively corresponding to the plurality of motors according to torques generated by each of the plurality of motors. Besides, a control method adapted to the upper limb training system is also provided.
Abstract:
An adaptive active training system includes a motion module, a sensing module and a control module. The motion module includes a training unit and a motor connected to the training unit. The motor is configured to bring the training unit to move along a motion trajectory. The sensing module is configured to sense a physiological signal of a user when the user uses the training unit. The control module is connected to the motion module and the sensing module. The control module is configured to calculate a position of the training unit on the motion trajectory, obtain a threshold value corresponding to the position based on a motion model, and determine whether a magnitude of the physiological signal is greater than the threshold value.
Abstract:
A method for controlling gait-training apparatus using biofeedback is provided. A biosignal-detecting loop is used to detect and analyze the electromyographic signal of a user using the gait-training apparatus. A feedback control loop is used to drive the gait-training apparatus and determine the fatigue level of the user. When the user's muscle starts to become fatigue, the feedback control loop can further adjust the threshold for triggering the gait-training apparatus to retain the training session so that the training intensity can be regulated on-line and the user's muscle can be trained effectively based on the concept of progressive overload.
Abstract:
An upper limb training system adapted to an upper limb of a user includes a main body and a control unit. The main body includes a training unit and a plurality of motors. The training unit is connected to the upper limb. The plurality of motors are coupled to the training unit. The control unit is electrically connected to the training unit and the plurality of motors and calculates a plurality of torque intervals respectively corresponding to the plurality of motors according to torques generated by each of the plurality of motors. Besides, a control method adapted to the upper limb training system is also provided.
Abstract:
An exoskeleton apparatus includes a base unit, a support unit, and upper and lower arm units. The support unit is rotatable about a vertical first axis relative to the base unit. The upper arm unit includes a linking axle, a main arm that has a connecting end rotatable about a horizontal second axis, and a linkage mechanism for rotating the linking axle relative to the main arm about a horizontal third axis. The lower arm unit is rotatable relative to the upper arm unit, and includes a lower arm set co-rotatably coupled to the linking axle, a hand-receiving seat rotatably connected to the lower arm set, and a lower arm receiving seat connected to the hand-receiving seat, and a drive member for rotating the hand-receiving seat about a horizontal fourth axis.
Abstract:
A method for controlling gait-training apparatus using biofeedback is provided. A biosignal-detecting loop is used to detect and analyze the electromyographic signal of a user using the gait-training apparatus. A feedback control loop is used to drive the gait-training apparatus and determine the fatigue level of the user. When the user's muscle starts to become fatigue, the feedback control loop can further adjust the threshold for triggering the gait-training apparatus to retain the training session so that the training intensity can be regulated on-line and the user's muscle can be trained effectively based on the concept of progressive overload.