Abstract:
An intrinsic barrier device, method and computer program product for isolating a communication channel of an input/output (IO) module from a field device. The intrinsic barrier device includes a front end having a programming input adapted to receive an analog input (AI), analog output (AO), digital input (DI) or digital output (DO) IO type configuration signal. The intrinsic barrier device also includes a processor to process the IO type configuration signal and an associated memory device storing an intrinsic barrier IO type configuration (IBTC) program. The processor is programmed to implement the IBTC program. The processor, responsive to the IO type configuration signal configures the intrinsic barrier device to operate as the AI, AO, DI or DO for supporting communications through the intrinsic barrier device over the communication channel between the IO module and the field device in the AI, AO, DI or DO.
Abstract:
Safety monitoring systems and methods include a mesh communications network and an EVC (Electronic Volume Corrector) installed in one or more gas distribution components and/or industrial metering components in a gas distribution station and/or an industrial metering station. A group of sensors can be configured, which includes, for example, a gas leak sensor, a pressure transducer, a temperature transducer, an intrusion sensor and/or other types of sensors. Such sensors can be located within the gas distribution station and/or industrial metering station. The sensors communicate wirelessly with the EVC and the gas distribution and/or industrial metering components through the mesh communications network.
Abstract:
A method of FSK decoding includes generating a pulse waveform (R'Edge) from a received FSK encoded signal (FSK signal) and a system clock (Sys_clk). From R'Edge and Sys_clk clocks are generated including a first clock and second clock framing a logic ‘0’ level of the FSK signal, and a third clock and fourth clock framing a logic ‘1’ level of the FSK signal. At least four frequency envelopes are generated from the clocks including a logic ‘0’ envelope, a logic ‘1’ envelope, a lower frequency envelope below the logic ‘0’ envelope, and an upper frequency envelope above the logic ‘1’ envelope. R'Edge is compared to the four envelopes, and a decoded output is produced, logic ‘0’ if the R'Edge overlaps the logic ‘0’ envelope, logic ‘1’ if R'Edge overlaps the logic ‘1’ envelope, and a previous output state if R'Edge does not overlap the logic ‘0’ or logic ‘1’ envelope.
Abstract:
A method for sensing modulated signals in a process facility. The method includes providing a monitoring device that includes a non-contact electromagnetic sensor (EM sensor) configured to sense a modulated signal transmitted on a cable including a conductor coupled to a sensing device or apparatus in the process facility. The monitoring device further includes a non-transitory machine readable storage device and a processor. The non-transitory machine readable storage device stores a data decoding program including protocol information for identifying different communication protocols. The monitoring device is positioned in proximity to the cable for the EM sensor to detect the modulated signal. The data decoding program is implemented by the processor causing the processor to detect the modulated signal and condition the modulated signal to provide a conditioned modulated signal. The conditioned modulated signal is decoded to generate decoded signal data, and the decoded signal data is displayed.