Abstract:
A radar system including a plurality of mini radars may be conformable to a structure that it is attached or built into. A radar system includes a clock, a plurality of frequency modulated/continuous wave (FM/CW) radar units in signal communication with the clock and a processor in signal communication with the plurality of FM/CW radar units. Each of the plurality of FM/CW radar units includes a row of antenna elements.
Abstract:
This disclosure is directed to devices, systems, and methods for operating a hybrid radar that combines Frequency-Modulated Continuous-Wave (FMCW) radar and pulsed radar in a single radar wave-train. In one example, a device includes a hybrid radar system configured to generate a hybrid radar wave-train that combines Frequency-Modulated Continuous-Wave (FMCW) radar and pulsed radar. The device may include a hybrid radar transmission synthesizer and a hybrid radar transmission processing system, communicatively coupled to receive signals from the hybrid radar transmission synthesizer.
Abstract:
A computer-implemented method of navigating a vertical take-off and landing (“VTOL”) vehicle near a landing zone, may comprise receiving data related to a first radar signal reflected from at least one corner reflector; determining whether the received data is consistent with a predefined target landing zone; upon determining that the received data is consistent with the predefined target landing zone, determining a location of the VTOL vehicle relative to the predefined target landing zone, using a second radar signal reflected from at least one corner reflector; and determining whether the location of the VTOL vehicle is consistent with a predefined landing position.
Abstract:
Systems and methods for calibrating and optimizing frequency modulated continuous wave radar altimeters using adjustable self-interference cancellation are disclosed. In at least one embodiment, a radar altimeter system comprises: a local oscillator delay line including a variable delay circuit configured to output a delayed signal, a transmitter coupled to the local oscillator delay line and configured to output a transmitter signal, a transceiver circulator coupled to an antenna and coupled to the transmitter, and a frequency mixer coupled to the delay line and coupled to the transceiver circulator. The transceiver circulator directs the transmitter signal to the antenna and the antenna is configured to transmit the transmitter signal and receive a reflected signal from a target. Further, the frequency mixer is configured to receive the delayed signal and the target reflected signal from the transceiver circulator.
Abstract:
A radar system including a plurality of mini radars may be conformable to a structure that it is attached or built into. A radar system includes a clock, a plurality of frequency modulated/continuous wave (FM/CW) radar units in signal communication with the clock and a processor in signal communication with the plurality of FM/CW radar units. Each of the plurality of FM/CW radar units includes a row of antenna elements.
Abstract:
Systems and methods for calibrating and optimizing frequency modulated continuous wave radar altimeters using adjustable self-interference cancellation are disclosed. In at least one embodiment, a radar altimeter system comprises: a local oscillator delay line including a variable delay circuit configured to output a delayed signal, a transmitter coupled to the local oscillator delay line and configured to output a transmitter signal, a transceiver circulator coupled to an antenna and coupled to the transmitter, and a frequency mixer coupled to the delay line and coupled to the transceiver circulator. The transceiver circulator directs the transmitter signal to the antenna and the antenna is configured to transmit the transmitter signal and receive a reflected signal from a target. Further, the frequency mixer is configured to receive the delayed signal and the target reflected signal from the transceiver circulator.
Abstract:
Systems and methods for a variable delay line using variable capacitors in a time delay filter are provided. In at least one embodiment, a delay line is configured to apply an adjustable time delay to an electromagnetic signal travelling through the delay line. The delay line comprises a filter that includes a first variable capacitor. Further, a capacitance of the first variable capacitor is configured to adjust the delay applied to the electromagnetic signal travelling through the delay line when varied.
Abstract:
Systems and methods for a variable delay line using variable capacitors in a time delay filter are provided. In at least one embodiment, a delay line is configured to apply an adjustable time delay to an electromagnetic signal travelling through the delay line. The delay line comprises a filter that includes a first variable capacitor. Further, a capacitance of the first variable capacitor is configured to adjust the delay applied to the electromagnetic signal travelling through the delay line when varied.