Abstract:
Provided are an optical coupler and an active optical module including the same. The optical coupler includes at least one first optical fiber, a second optical fiber, and a hollow optical block. The at least one first optical fiber transfers pump light. The second optical fiber includes a cladding with a facet enlarged from a first outer diameter to a second outer diameter, and passes the pump light which is transferred through the first optical fiber. The hollow optical block includes a through hole, an incident surface, and a coupling surface. The through hole passes the cladding with the first outer diameter. The incident surface is connected to the first optical fiber at a side end of the through hole. The coupling surface is joined to the facet of the second optical fiber at the other side end of the through hole facing the incident surface.
Abstract:
Provided are an optical coupler, which can improve miniaturization and integration, and an active optical module comprising the same. The optical coupler comprises a hollow optical block having a through hole formed to pass an optical fiber therethrough. The hollow optical block comprises at least one incidence plane, at least one internal reflection plane, and at least one tapering region. The incidence plane is disposed at the bottom of the hollow optical block, which is parallel to the through hole, to incident-transmit light. The internal reflection plane is disposed at the top of the hollow optical block, which is opposite to the incidence plane, to reflect the light, which is received from the incidence plane, into the hollow optical block. The tapering region is configured to concentrate the light on the optical fiber in the through hole. The tapering region is formed such that the outer diameter of the hollow optical block decreases away from the internal reflection plane and the incidence plane.
Abstract:
The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
Abstract:
Provided are an optical fiber coupler, a method of manufacturing the same, and an active optical module. The optical fiber coupler comprises a first core, a first optical fiber, and a plurality of second optical fibers. The first optical fiber comprises a first cladding surrounding a first core. The plurality of second optical fibers have a tapering region of a cylindrical shape and surround the first cladding of the first optical fiber. Here, the first core has the same diameter within the tapering region.
Abstract:
Provided is a fiber laser system including fiber containing dysprosium. The fiber laser system uses 1.7-μμm pump light. A resonator of the fiber laser system includes a dichroic mirror, a partial reflection mirror, and/or an FBG. Therefore, the fiber laser system can provide 3-μm laser light and have high light pumping efficiency and high output power. The fiber laser system includes: fiber including dysprosium, a pump light source disposed at a side of the fiber and emitting pump light having a wavelength exciting electrons of the dysprosium from a ground energy level 6H15/2 to an energy level 6H11/2; a first reflection member, disposed between the fiber and the pump light source, transmitting the pump light, and reflecting first lasing light having a first wavelength; and a second reflection member, disposed at a side opposite to the pump light source with respect to the fiber, transmitting a portion of the first lasing light.
Abstract:
There are provided an optical fiber coupler configured to improve or optimize optical efficiency and coupling efficiency, a method of manufacturing the optical fiber coupler, and an active optical module. The optical fiber coupler includes a first optical fiber and second optical fibers. The first optical fiber includes a first core and a first cladding surrounding the first core, and the second optical fibers are coupled to the first cladding. The first cladding includes a first coupling facet to which ends of the second optical fibers are coupled.
Abstract:
Provided is a gain-clamped (GC) optical amplifier using a fiber Raman amplifier (FRA) having a Raman cavity. The FRA having a Raman cavity comprises a Raman fiber module (RFM) amplifying and outputting an input optical signal and a resonant cavity generating a Raman laser and a gain clamping laser (GC laser), wherein the resonant cavity is formed as a feedback loop between an input terminal and an output terminal of the RFM. Accordingly, a gain of an optical signal propagating along a core of RFM keeps a constant value regardless of input signal intensity by generating the GC laser for gain clamping between a wavelength band of the Raman laser and a gain band of input signals.