摘要:
A multi-layered dielectric layer wherein the adhesion characteristic of an insulating layer including a Si—CH3 bond is improved, and a method of forming the same are provided. The multi-layered dielectric layer is formed on conductive patterns and includes a first insulating layer formed of a layer having a low dielectric constant including the Si—CH3 bond. In order to improve the adhesion characteristic of the first insulating layer, an adhesion surface is formed on the surface of the first insulating layer by treating the first insulating layer with plasma. In an alternative, the adhesion characteristics of the first insulating layer is improved by forming a buffer layer on the first insulating layer so that dipole-dipole interaction occurs between the first insulating layer and the buffer layer.
摘要:
A multi-layered dielectric layer wherein the adhesion characteristic of an insulating layer including a Si—CH3 bond is improved, and a method of forming the same are provided. The multi-layered dielectric layer is formed on conductive patterns and includes a first insulating layer formed of a layer having a low dielectric constant including the Si—CH3 bond. In order to improve the adhesion characteristic of the first insulating layer, an adhesion surface is formed on the surface of the first insulating layer by treating the first insulating layer with plasma. In an alternative, the adhesion characteristics of the first insulating layer is improved by forming a buffer layer on the first insulating layer so that dipole—dipole interaction occurs between the first insulating layer and the buffer layer.
摘要:
A method of forming a metal wiring using a dual damascene process is provided. A photosensitive polymer having low permittivity is used as an etch mask. Though the etch mask remains in the final structure, its low permittivity reduces parasitic capacitance effects. In this method, a photosensitive polymer pattern having a first hole with a first width is formed on a first interlayer dielectric film. A second interlayer dielectric film is formed on the photosensitive polymer pattern. A mask pattern, having a second hole, above the first hole, with a second width larger than the first width, is formed on the second interlayer dielectric film. A wiring region is formed by dry-etching the second interlayer dielectric film using the mask pattern as an etch mask. A via hole region is formed by dry-etching the first interlayer dielectric film using the photosensitive polymer pattern as an etch mask.
摘要:
A method of forming a metal wiring using a dual damascene process is provided. A photosensitive polymer having low permittivity is used as an etch mask. Though the etch mask remains in the final structure, its low permittivity reduces parasitic capacitance effects. In this method, a photosensitive polymer pattern having a first hole with a first width is formed on a first interlayer dielectric film. A second interlayer dielectric film is formed on the photosensitive polymer pattern. A mask pattern, having a second hole, above the first hole, with a second width larger than the first width, is formed on the second interlayer dielectric film. A wiring region is formed by dry-etching the second interlayer dielectric film using the mask pattern as an etch mask. A via hole region is formed by dry-etching the first interlayer dielectric film using the photosensitive polymer pattern as an etch mask.
摘要:
A method for forming a completely buried contact hole and a semiconductor device having a completely buried contact hole in an interconnection structure is disclosed. The completely buried contact hole includes a first insulating layer of a first thermal conductivity having a contact hole formed therein. A region of material of a second thermal conductivity formed in the first insulating layer adjacent the location of the contact hole. The second thermal conductivity is greater than the first thermal conductivity such that the thermal conductivity of the region of material is greater than the thermal conductivity of the insulating layer. A metal is formed in the hole which completely buries the contact hole. The method includes forming in an insulator adjacent a contact hole a region of material of a higher thermal conductivity than the insulating layer, depositing a metal in the contact hole and heating the metal, the insulating layer and the region of material of a higher thermal conductivity to flow the metal into the contact hole so as to completely bury the contact hole.
摘要:
Methods of fabricating an interconnection to an underlying microelectronic layer include removing a portion of the insulation layer to form a plurality of contact holes having different contact sizes therethrough and thereby expose a portion of the microelectronic layer. A conductive material is deposited on the insulation layer and in the contact hole with a sufficient thickness such that a bridge is generated in the largest contact hole. The deposited conductive material is then reflowed to fill the contact hole and form an interconnection to the underlying microelectronic layer, by supplying a high pressure such that at least the void formed in the largest contact hole is filled. The conductive material may be planarized to thereby expose the insulation layer. The present invention may be applied to an asymmetrical contact hole, for example, a dual damascene structure. In a large contact hole in which it is difficult to bridge the contact hole, a second insulation layer having a lower etch rate is formed on a first insulation layer having a higher etch rate when etched by an etchant. Portions of the first and second insulation layers are then removed to form a contact hole therethrough, leaving portions of the second insulation layer extending the first insulation layer at peripheral portions of the contact hole, overhang the exposed portion of the microelectronic layer.
摘要:
A method for forming a completely buried contact hole and a semiconductor device having a completely buried contact hole in an interconnection structure is disclosed. The completely buried contact hole includes a first insulating layer of a first thermal conductivity having a contact hole formed therein. A region of material of a second thermal conductivity formed in the first insulating layer adjacent the location of the contact hole. The second thermal conductivity is greater than the first thermal conductivity such that the thermal conductivity of the region of material is greater than the thermal conductivity of the insulating layer. A metal is formed in the hole which completely buries the contact hole. The method includes forming in an insulator adjacent a contact hole a region of material of a higher thermal conductivity than the insulating layer, depositing a metal in the contact hole and heating the metal, the insulating layer and the region of material of a higher thermal conductivity to flow the metal into the contact hole so as to completely bury the contact hole.
摘要:
A method for forming a completely buried contact hole and a semiconductor device having a completely buried contact hole in an interconnection structure is disclosed. The completely buried contact hole includes a first insulating layer of a first thermal conductivity having a contact hole formed therein. A region of material of a second thermal conductivity formed in the first insulating layer adjacent the location of the contact hole. The second thermal conductivity is greater than the first thermal conductivity such that the thermal conductivity of the region of material is greater than the thermal conductivity of the insulating layer. A metal is formed in the hole which completely buries the contact hole. The method includes forming in an insulator adjacent a contact hole a region of material of a higher thermal conductivity than the insulating layer, depositing a metal in the contact hole and heating the metal, the insulating layer and the region of material of a higher thermal conductivity to flow the metal into the contact hole so as to completely bury the contact hole.