摘要:
An implementation of a technology, described herein, for transmitting compressed network transport-layer-protocol headers in a speedy, efficient, inferentially synchronized, and robust manner. An implementation, described herein, models the transmission of compressed headers to the congestion procedure of the network transport-layer protocol (e.g., TCP's). Doing so, the sender of the compressed headers can infer whether the receiver correctly received them. Unlike the slow direct synchronization employed by conventional schemes, this implementation of the present claimed invention inferentially synchronizes by modeling after the congestion procedure of the network transport-layer protocol. This is inherently faster than direct synchronization. Since the implementation performs well over both noiseless and noisy links, it is particularly suited to use over wireless communications channels. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
An implementation of a technology, described herein, for transmitting compressed network transport-layer-protocol headers in a speedy, efficient, inferentially synchronized, and robust manner. An implementation, described herein, models the transmission of compressed headers to the congestion procedure of the network transport-layer protocol (e.g., TCP's). Doing so, the sender of the compressed headers can infer whether the receiver correctly received them. Unlike the slow direct synchronization employed by conventional schemes, this implementation of the present claimed invention inferentially synchronizes by modeling after the congestion procedure of the network transport-layer protocol. This is inherently faster than direct synchronization. Since the implementation performs well over both noiseless and noisy links, it is particularly suited to use over wireless communications channels. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
An implementation of a technology, described herein, for transmitting compressed network transport-layer-protocol headers in a speedy, efficient, inferentially synchronized, and robust manner. An implementation, described herein, models the transmission of compressed headers to the congestion procedure of the network transport-layer protocol (e.g., TCP's). Doing so, the sender of the compressed headers can infer whether the receiver correctly received them. Unlike the slow direct synchronization employed by conventional schemes, this implementation of the present claimed invention inferentially synchronizes by modeling after the congestion procedure of the network transport-layer protocol. This is inherently faster than direct synchronization. Since the implementation performs well over both noiseless and noisy links, it is particularly suited to use over wireless communications channels. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
An implementation of a technology, described herein, for transmitting compressed network transport-layer-protocol headers in a speedy, efficient, inferentially synchronized, and robust manner. An implementation, described herein, models the transmission of compressed headers to the congestion procedure of the network transport-layer protocol (e.g., TCP's). Doing so, the sender of the compressed headers can infer whether the receiver correctly received them. Unlike the slow direct synchronization employed by conventional schemes, this implementation of the present claimed invention inferentially synchronizes by modeling after the congestion procedure of the network transport-layer protocol. This is inherently faster than direct synchronization. Since the implementation performs well over both noiseless and noisy links, it is particularly suited to use over wireless communications channels. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
An implementation of a technology, described herein, for transmitting compressed network transport-layer-protocol headers in a speedy, efficient, inferentially synchronized, and robust manner. An implementation, described herein, models the transmission of compressed headers to the congestion procedure of the network transport-layer protocol (e.g., TCP's). Doing so, the sender of the compressed headers can infer whether the receiver correctly received them. Unlike the slow direct synchronization employed by conventional schemes, this implementation of the present claimed invention inferentially synchronizes by modeling after the congestion procedure of the network transport-layer protocol. This is inherently faster than direct synchronization. Since the implementation performs well over both noiseless and noisy links, it is particularly suited to use over wireless communications channels. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
A resource allocation of multiple compressed AV streams delivered over the Internet is disclosed that achieves end-to-end optimal quality through a multimedia streaming TCP-friendly transport (MSTFP) protocol that adaptively estimates the network bandwidth while smoothing the sending rate. Resources allocated dynamically according to a media encoding distortion and network degradation algorithm. A scheme is also disclosed for dynamically estimating the available network bandwidth for streaming of objects, such as MPEG4 multiple video objects, in conjunction with the MSTFP protocol. The scheme can account for packet-loss rates to minimize end-to-end distortion for media delivery.
摘要:
A resource allocation of multiple compressed AV streams delivered over the Internet is disclosed that achieves end-to-end optimal quality through a multimedia streaming TCP-friendly transport (MSTFP) protocol that adaptively estimates the network bandwidth while smoothing the sending rate. Resources allocated dynamically according to a media encoding distortion and network degradation algorithm. A scheme is also disclosed for dynamically estimating the available network bandwidth for streaming of objects, such as MPEG4 multiple video objects, in conjunction with the MSTFP protocol. The scheme can account for packet-loss rates to minimize end-to-end distortion for media delivery.
摘要:
A power control scheme for a wireless network communication system that includes a base station and multiple wireless mobile device dynamically adjusts transmission power of a mobile device in conjunction with adjusting its bit allocation in source coding and channel coding to minimize its total power consumption while maximizing the system capacity in terms of the total effective transmission rates received by the base station. The base station sets a target signal quality value for each mobile station, and the target values are determined by the base station such that the total effective data rate from all the mobile devices is maximized under constraints of the total received power and the error protection level requirements for the mobile devices. The base station periodically measures a signal quality value, such as a signal-to-interference ratio (SIR), from transmissions received by the base from each mobile device, compares it with the measured signal quality value for that mobile device, and sends a control signal instructing the mobile device to increase or decrease its transmission power based on the result of the comparison. When the mobile device receives the control signal, it determines an amount of adjustment to its transmission power by performing a minimum calculation under constraints on the total data distortion and the maximum transmission rate to adjust the parameters for source coding, channel coding, and transmission under the constraints to result in a redistribution of power between the components that provides the minimized total power consumption.
摘要:
A resource allocation of multiple compressed AV streams delivered over the Internet is disclosed that achieves end-to-end optimal quality through a multimedia streaming TCP-friendly transport (MSTFP) protocol that adaptively estimates the network bandwidth while smoothing the sending rate. Resources allocated dynamically according to a media encoding distortion and network degradation algorithm. A scheme is also disclosed for dynamically estimating the available network bandwidth for streaming of objects, such as MPEG4 multiple video objects, in conjunction with the MSTFP protocol. The scheme can account for packet-loss rates to minimize end-to-end distortion for media delivery.
摘要:
A resource allocation of multiple compressed AV streams delivered over the Internet is disclosed that achieves end-to-end optimal quality through a multimedia streaming TCP-friendly transport (MSTFP) protocol that adaptively estimates the network bandwidth while smoothing the sending rate. Resources allocated dynamically according to a media encoding distortion and network degradation algorithm. A scheme is also disclosed for dynamically estimating the available network bandwidth for streaming of objects, such as MPEG-4 multiple video objects, in conjunction with the MSTFP protocol. The scheme can account for packet-loss rates to minimize end-to-end distortion for media delivery.