摘要:
A non-volatile memory disposed in a SOI substrate is provided. The non-volatile memory includes a memory cell and a first conductive type doped region. The memory cell includes a gate, a charge storage structure, a bottom dielectric layer, a second conductive type drain region, and a second conductive type source region. The gate is disposed on the SOI substrate. The charge storage structure is disposed between the gate and the SOI substrate. The bottom dielectric layer is disposed between the charge storage layer and the SOI substrate. The second conductive type drain region and the second conductive type source region are disposed in a first conductive type silicon body layer next to the two sides of the gate. The first conductive type doped region is disposed in the first conductive type silicon body layer and electrically connected to the first conductive type silicon body layer beneath the gate.
摘要:
A non-volatile memory including a substrate, a first doped region, a second doped region, a third doped region, a first gate structure, and a second gate structure is disclosed. The doped regions are disposed in the substrate and the second doped region is disposed between the first doped region and the third doped region. The first gate structure is disposed on the substrate between the first doped region and the second doped region. The second gate structure is disposed on the substrate between the second doped region and the third doped region, and comprises a tunneling dielectric layer, a charge trapping structure and a gate from the bottom up.
摘要:
A non-volatile memory disposed in a SOI substrate is provided. The non-volatile memory includes a memory cell and a first conductive type doped region. The memory cell includes a gate, a charge storage structure, a bottom dielectric layer, a second conductive type drain region, and a second conductive type source region. The gate is disposed on the SOI substrate. The charge storage structure is disposed between the gate and the SOI substrate. The bottom dielectric layer is disposed between the charge storage layer and the SOI substrate. The second conductive type drain region and the second conductive type source region are disposed in a first conductive type silicon body layer next to the two sides of the gate. The first conductive type doped region is disposed in the first conductive type silicon body layer and electrically connected to the conductive type silicon body layer beneath the gate.
摘要:
A non-volatile memory disposed in a SOI substrate is provided. The non-volatile memory includes a memory cell and a first conductive type doped region. The memory cell includes a gate, a charge storage structure, a bottom dielectric layer, a second conductive type drain region, and a second conductive type source region. The gate is disposed on the SOI substrate. The charge storage structure is disposed between the gate and the SOI substrate. The bottom dielectric layer is disposed between the charge storage layer and the SOI substrate. The second conductive type drain region and the second conductive type source region are disposed in a first conductive type silicon body layer next to the two sides of the gate. The first conductive type doped region is disposed in the first conductive type silicon body layer and electrically connected to the first conductive type silicon body layer beneath the gate.
摘要:
A method for writing a memory module includes providing a plurality of memory cells. Each memory cell includes a substrate, a P-type drain and source, a gate, and a stack dielectric layer which stores 2-bit data. Memory cells are arranged in a matrix with gates and sources on the same row connected respectively to the same word line and same source line, and drains on the same column connected to the same bit line. Each line receives a respective voltage with the word line of the memory cell to be written receiving voltage to turn on its P-type channel, the word line of the memory cell not to be written receiving voltage to turn off its P-type channel, and the bit line of the memory cell to be written receiving voltage so that a hot hole in its P-type channel induces hot electron injection into its stack dielectric layer.
摘要:
A method for writing a memory module includes providing a plurality of memory cells. Each memory cell includes a substrate, a P-type drain and source, a gate, and a stack dielectric layer which stores 2-bit data. Memory cells are arranged in a matrix with gates and sources on the same row connected respectively to the same word line and same source line, and drains on the same column connected to the same bit line. Each line receives a respective voltage with the word line of the memory cell to be written receiving voltage to turn on its P-type channel, the word line of the memory cell not to be written receiving voltage to turn off its P-type channel, and the bit line of the memory cell to be written receiving voltage so that a hot hole in its P-type channel induces hot electron injection into its stack dielectric layer.
摘要:
An operating method of a non-volatile memory adapted for a non-volatile memory disposed on an SOI substrate including a first conductive type silicon body layer is provided. The non-volatile memory includes a gate, a charge storage structure, a second conductive type drain region, and a second conductive type source region. In operating such a non-volatile memory, voltages are applied to the gate, the second conductive type drain region, the second conductive type source region and the first conductive type silicon body layer beneath the gate, to inject electrons or holes in to the charge storage structure or evacuate the electrons from the charge storage structure by a method selected from a group consisting of channel hot carrier injection, source side injection, band-to-band tunnelling hot carrier injection and Fowler-Nordheim (F-N) tunnelling.
摘要:
A memory cell includes an N-type well, three P-type doped regions, a first stacked dielectric layer, a first gate, a second stacked dielectric layer, and a second gate. The three P-type doped regions are formed on the N-well. The first dielectric stack layer is formed on the N-type well and between the first doped region and the second doped region from among the three P-type doped regions. The first gate is formed on the first stacked dielectric layer. The second stacked dielectric layer is formed on the N-type well and between the second doped region and the third doped region from among the three P-type doped regions. The second gate is formed on the second stacked dielectric layer.
摘要:
An operating method of a non-volatile memory adapted for a non-volatile memory disposed on an SOI substrate including a first conductive type silicon body layer is provided. The non-volatile memory includes a gate, a charge storage structure, a second conductive type drain region, and a second conductive type source region. In operating such a non-volatile memory, voltages are applied to the gate, the second conductive type drain region, the second conductive type source region and the first conductive type silicon body layer beneath the gate, to inject electrons or holes in to the charge storage structure or evacuate the electrons from the charge storage structure by a method selected from a group consisting of channel hot carrier injection, source side injection, band-to-band tunnelling hot carrier injection and Fowler-Nordheim (F-N) tunnelling.
摘要:
A memory cell includes an N-type well, three P-type doped regions, a first stacked dielectric layer, a first gate, a second stacked dielectric layer, and a second gate. The three P-type doped regions are formed on the N-well. The first dielectric stack layer is formed on the N-type well and between the first doped region and the second doped region from among the three P-type doped regions. The first gate is formed on the first stacked dielectric layer. The second stacked dielectric layer is formed on the N-type well and between the second doped region and the third doped region from among the three P-type doped regions. The second gate is formed on the second stacked dielectric layer.