Abstract:
A light emitting diode (LED) illuminant system, a manufacture method thereof, and a backlight module using the same are provided. The LED illuminant system includes a plurality of white light illuminants and at least one green light illuminant mixed in the white light illuminants. A light power ratio of the green light illuminant to the white light illuminants is in between ⅕ to 1/20. The color temperature of the whole illuminant system will be enhanced to a certain extent by mixing the green light illuminant and the white light illuminants. The manufacture method includes the following steps: obtaining a transmission spectrum of the white light illuminants; analyzing the transmission spectrum to determine n supplemental amount of a green light; and disposing at least one green illuminant in accordance with the supplemental amount of the green light.
Abstract:
A backlight source has different luminescence types of electroluminescence devices and coordinates at least one of the arrangement positions and the arrangement spacing of the electroluminescence devices to improve the brightness uniformity of the backlight source and make the mixed light better. Moreover, because of the brightness uniformity promotion, the overall thickness of backlight module can be reduced.
Abstract:
A light-emitting unit includes a bounding frame, a first light-emitting element, a second light-emitting element, and a first reflecting sheet. The first light-emitting element and the second light-emitting element are disposed in the bounding frame, and emit light in different directions. The first reflecting sheet is disposed on the bounding frame, and has a reflecting surface on one side away from the bounding frame.
Abstract:
The present invention uses different frequencies to drive the LED strips in the back-lighting source so that the spatial uniformity of the back-lighting source as well as the color levels in the source can be monitored and adjusted. Each individual strip is assigned to a different frequency. Alternatively, the strips are divided into groups and each group is assigned to a different frequency. A group may comprise two or more strips. Furthermore, some groups may have more strips than the other groups and the number of LEDs in one strip may be different from the number in other strips. The brightness uniformity and the color levels in the back-lighting source are sensed by one or more groups of color sensors in R, G and B. The assignment of driving frequencies can be based on the location of the strips.
Abstract:
A light emitting diode (LED) illuminant system, a manufacture method thereof, and a backlight module using the same are provided. The LED illuminant system includes a plurality of white light illuminants and at least one green light illuminant mixed in the white light illuminants. A light power ratio of the green light illuminant to the white light illuminants is in between 1/5 to 1/20. The color temperature of the whole illuminant system will be enhanced to a certain extent by mixing the green light illuminant and the white light illuminants. The manufacture method includes the following steps: obtaining a transmission spectrum of the white light illuminants; analyzing the transmission spectrum to determine n supplemental amount of a green light; and disposing at least one green illuminant in accordance with the supplemental amount of the green light.
Abstract:
A diffusion plate of a backlight structure and a display device using the same are provided. The diffusion plate is used in the backlight structure having several light emitting diodes. The diffusion plate includes a main body with many depression structures positioned on a surface of the main body. The surface faces the light emitting diodes. Each depression structure is positioned above the corresponding light emitting diode and includes an inclined surface. An inclined angle is formed between each inclined surface and a central axis of the corresponding light emitting diode for refracting the light emitted by the corresponding light emitting diode.
Abstract:
A backlight module includes a reflective plate and a light source. The reflective plate comprises a plurality of reflective regions, and the light source is disposed at a side of the reflective plate. Diffusivity of the reflective regions away from the light source is different from diffusivity of the reflective regions near the light source.
Abstract:
A direct backlight module for an LCD panel includes a base, a supporter plate and a plurality of films. The base further has a plurality of lamps parallel arranged thereinside. The supporter plate is mounted over the base and further has a frame and a plurality of wires. The frame is a square structure having a central opening, and each of the wires is constructed at the frame by crossing the central opening. The films are mounted layer by layer over the supporter plate and born by both the frame and the wires. The module can engage with an LCD at a side exposing the film and, under such an engagement, lights of the lamps can pass through the central opening of the supporter plate, penetrate the films, and finally reach the LCD.
Abstract:
A backlight module includes a light guide plate, a first light source device, and a second light source device. The first light source device is disposed adjacent to a first side surface of the light guide plate and has at least one first polarized light source for emitting a first polarized light beam. The second light source device is disposed adjacent to a second side surface of the light guide plate and has at least one second polarized light source for emitting a second polarized light beam. The light guide plate includes a first polarized light transmitting region adjacent to the second light source device and a second polarized light transmitting region adjacent to the first light source device.
Abstract:
A method of determining driving currents of a backlight module includes: disposing the backlight module onto a base; defining a plurality of areas from a top area to a bottom are of the backlight module; and reducing the driving current of the area that is situated further from the base.