Abstract:
A method of allocating communication resources for a communication between a transmitter and a receiver in a communication system, the communication resources being divided in time periods and frequency sub-bands. The transmitter receives a channel quality measurement sent by the receiver. The transmitter performs allocation of a first part of the communication resources to the receiver according to the channel quality measurement if allocation of the first part is selected, or allocation of a second part of the communication resources to the receiver if allocation of the first part is not selected. The transmitter informs the receiver of allocated communication resources, and the allocated communication resources being designated for frequency localized channels or for frequency distributed channels.
Abstract:
A method is provided for arranging transmissions on a downlink carrier c, spanning a frequency range Fc, in a mobile radio communications system, wherein a bandwidth of Fc belongs to a set of predefined channel bandwidths in the communications system, and wherein the carrier c comprises a reference signal defined in the communications system. A configurable frequency range FRS comprising a set of time-frequency resources for comprising the reference signal of the carrier c is provided. Information associated with the configuration of said frequency range FRS is signaled to a receiver in the communications system, such that c can be deployed over a frequency range F smaller than Fc when the frequency range FRS is configured within F and any other transmissions on the carrier c are arranged to be within F.
Abstract:
The present disclosure relates to a method for facilitating synchronization in a wireless communication system. A number sequence of length L is defined. The number sequence is mapped on a first set of discrete Fourier frequency coefficients. A second set of discrete Fourier frequency coefficients is generated by frequency shifting the first set of discrete Fourier frequency coefficients. The second set of discrete Fourier frequency coefficients is transformed into a time domain signal.
Abstract:
Generate a first set S comprising a plurality of quasi-orthogonal sets of sequences; generate L number of second sets of quasi-orthogonal sets of sequences Th by symbol-by-symbol multiplication of each sequence in the first set S with signature sequences {wh(k)}, wherein h=0, . . . , L−1, L is a positive integer larger than or equal to one, and each second set Th has the same number of quasi-orthogonal sets of sequences and the same length of sequences as said first set S; and generate a superset Z of quasi-orthogonal sets of sequences as the union of said first set S and said L number of second sets Th.
Abstract:
The present disclosure relates to a method for facilitating synchronization in a wireless communication system. A number sequence of length L is defined. The number sequence is mapped on a first set of discrete Fourier frequency coefficients. A second set of discrete Fourier frequency coefficients is generated by frequency shifting the first set of discrete Fourier frequency coefficients. The second set of discrete Fourier frequency coefficients is transformed into a time domain signal.
Abstract:
The present disclosure provides a solution which solves the problem of demodulation reference signal (DMRS) ambiguity by introducing separate, i.e. different DMRSs. This is especially the case for systems employing dynamic allocation of control and data signals to different PRBs.
Abstract:
A method is provided for improving synchronization and information transmission in a communication system, including: generating a signal with a centrally symmetric part s(k) exploitable for synchronization; and sending the signal over a communication channel. The signal is based on a uniquely identifiable sequence c(l) from a set of sequences exploitable for information transmission. The centrally symmetric part s(k) is centrally symmetric in the shape of absolute value thereof. The centrally symmetric part s(k) is of arbitrary length N.
Abstract:
The present invention relates to a method for power control in a wireless communication system comprising at least one mobile station and N number of coordinated reception points with indices n=1, . . . , N, said coordinated reception points being spatially separated and adapted for receiving transmissions from said mobile station, said method comprising the steps of: estimating a propagation loss metric LUL for said mobile station, said propagation loss metric LUL being a weighted sum of individual propagation losses Ln from said mobile station to said coordinated reception points expressed in dB multiplied with associated weights wn; and using said propagation loss metric LUL for power control of said mobile station. Furthermore, the invention also relates to a method in a network control device, a method in a mobile station, a computer program, a computer program product, a network control device and a mobile station device.
Abstract:
The present invention relates to a method for allocating communication resources in a multi-user cellular communication system, wherein communication resources are divided in time periods and frequency sub-bands, wherein part of the communication resources are used for frequency-localized communication channels, and part of the communication resources are used for frequency distributed channels The method further comprises the steps of: classifying part of the frequency sub-bands as frequency sub-bands carrying frequency-distributed channels, classifying the remaining part of the frequency sub-bands as frequency sub-bands carrying frequency-localized channels. The present invention also relates to a system, a transmitter and a communication system.
Abstract:
The present disclosure provides a solution which solves the problem of demodulation reference signal (DMRS) ambiguity by introducing separate, i.e. different DMRSs. This is especially the case for systems employing dynamic allocation of control and data signals to different PRBs.