Abstract:
Executing a FOTA (firmware over the air) method in a LoRa network having low throughput and low power. the transceivers used in the end nodes and in the LoRa gateway are capable of selecting a certain frequency channel and deactivating the LoRa mode. If the spread-spectrum LoRa mode is deactivated, both transceivers at the end node and the gateway function instead using a basic FSK (frequency-shift keying) modulation scheme. This modulation scheme is capable of providing a higher data rate at the expense of reducing the “path balance,” which indicates how much attenuation the transmitted signal may sustain while still being able to be decoded at the receiver. When using the FSK modulation scheme at a high data rate, a FOTA method may be easily carried out, since the end node must have its receiver activated only for a short time.
Abstract:
A radio receiving apparatus according to the present invention receives a preamble signal through one frequency band and also detects a periodic symbol timing in a receiving period of a part of a symbol that composes the preamble signal. A frequency correction circuit includes a generating unit, a detecting unit, and a correction unit. The generating unit generates a detection window of a predetermined time width including each of a first and a second symbol timing that are previously determined among the periodic symbol timings in the receiving period of a remaining symbol that composes the preamble signal. The detecting unit sequentially receives a correlation value between the preamble signal and a reference signal and detects a maximum value from the correlation value input during a period when the detection window is opened. The correction unit corrects a frequency deviation of the one frequency band based on the maximum value.
Abstract:
According to one embodiment, the invention relates to a method comprising: transmitting (410), by an apparatus, a message to detect one or more wireless communication devices; receiving (420), in response to the transmitted message, at least one response message comprising at least identification information regarding a wireless communication device; determining (430) that the apparatus has data suitable for transmitting to the wireless communication device without establishing a formal communication connection with the wireless communication device; and transmitting (440) one or more subsequent messages to the wireless communication device in response to the received response message, wherein the one or more subsequent messages comprise at least the data suitable for transmitting to the wireless communication device without establishing a formal communication connection.
Abstract:
A method of allocating communication resources for a communication between a transmitter and a receiver in a communication system, the communication resources being divided in time periods and frequency sub-bands. The transmitter receives a channel quality measurement sent by the receiver. The transmitter performs allocation of a first part of the communication resources to the receiver according to the channel quality measurement if allocation of the first part is selected, or allocation of a second part of the communication resources to the receiver if allocation of the first part is not selected. The transmitter informs the receiver of allocated communication resources, and the allocated communication resources being designated for frequency localized channels or for frequency distributed channels.
Abstract:
This application relates to a tamper-resistant datalink communications system. The system may include a ground-based communications module configured to be coupled to a radio controller configured to remotely control a drone comprising one or more actuators and a remote-mounted communications module configured to communicate data with the ground-based communications module. The ground-based communications module may include a ground processor configured to: receive a plurality of first signals modulated with a first modulation scheme from the radio controller, convert the plurality of first signals to a second signal modulated with a second modulation scheme different from the first modulation scheme, and generate a plurality of second duplicated signals comprising two or more duplicate signals of the second signal. The ground-based communications module may also include a plurality of ground transmitters configured to operate in different frequencies and respectively transmit the plurality of second duplicated signals to the remote-mounted communications module.
Abstract:
Systems, devices and methods are disclosed for detecting, characterizing and engaging unmanned vehicles. In one aspect, a method includes detecting an object, such as an unmanned aerial, land or aquatic vehicle that communicates using a radio control (RC) communications protocol, traveling to a zone including scanning one or more frequencies of RF signals; analyzing one or both of time and frequency information of the RF signals to characterize the detected object; and engaging the detected object as an authorized or unauthorized object in the monitored zone.
Abstract:
Systems, devices and methods are disclosed for detecting, characterizing and engaging unmanned vehicles. In one aspect, a method includes detecting an object, such as an unmanned aerial, land or aquatic vehicle that communicates using a radio control (RC) communications protocol, traveling to a zone including scanning one or more frequencies of RF signals; analyzing one or both of time and frequency information of the RF signals to characterize the detected object; and engaging the detected object as an authorized or unauthorized object in the monitored zone.
Abstract:
A frequency correction circuit used in a radio receiving apparatus that receives a preamble signal through one frequency band and also detects a periodic symbol timing in a receiving period of a part of a symbol that composes the preamble signal, the frequency correction circuit includes a generating unit that generates a detection window of a predetermined time width including each of a first symbol timing and a second symbol timing in the receiving period of a remaining symbol that composes the preamble signal, the first and the second symbol timing being previously determined among periodic symbol timings, a detecting unit that sequentially receives a correlation value between the preamble signal and a reference signal and detects a maximum value from the correlation value input during a period when the detection window is opened, and a correction unit that corrects a frequency deviation of the one frequency band.
Abstract:
Methods and apparatuses are provided for transmitting data in a mobile station of a wireless communication system. Hopping information including a number of sub-bands and a size of a sub-band is identified. Resource allocation information is identified. A resource index is determined for transmitting the data based on the resource allocation information, and determining a resource index change in a unit of a sub-band, a resource index change in a unit of a resource unit, the number of sub-bands, and the size of the sub-band. The data is transmitted using the determined resource index. Each sub-band includes at least one resource unit, and each resource unit includes a plurality of subcarriers.
Abstract:
The present invention relates to a method for allocating communication resources in a multi-user cellular communication system, wherein communication resources are divided in time periods and frequency sub-bands, wherein part of the communication resources are used for frequency-localized communication channels, and part of the communication resources are used for frequency distributed channels The method further comprises the steps of: classifying part of the frequency sub-bands as frequency sub-bands carrying frequency-distributed channels, classifying the remaining part of the frequency sub-bands as frequency sub-bands carrying frequency-localized channels. The present invention also relates to a system, a transmitter and a communication system.