Abstract:
A near-eye display device is disclosed that includes a pixel display configured to display multiple groups of pixels, in each frame of image, that are output by scanning. The device includes multiple semi-reflectors, where each semi-reflector is in a one-to-one correspondence with each group of pixels displayed by the pixel display unit. Each semi-reflector includes multiple inner platings that are disposed at different reflection angles. Each of the inner platings is in a one-to-one correspondence with each pixel subunits that is in a group of pixels corresponding to a semi-reflector in which the inner plating is located. Each semi-reflector is configured to be activated when the group of pixels corresponding to the semi-reflector is reflected, and reflect each pixel subunit which is in a one-to-one correspondence with each of the inner platings to a direction of an eyeball center by using all the inner platings included in the semi-reflector.
Abstract:
A radio frequency signal transceiver includes: a transmission circuit configured to perform power amplification on an input first analog signal, wirelessly transmit the first analog signal after power amplification, and output the first analog signal after power amplification to a pre-distortion circuit; the pre-distortion circuit configured to convert the first analog signal after power amplification into a second analog signal and output the second analog signal, where the second analog signal is used to feedback distortion of the first analog signal to compensate the first analog signal in advance according to the distortion; and a receiving circuit configured to wirelessly receive a third analog signal, and process and output the third analog signal. The radio frequency signal transceiver can improve efficiency in receiving and transmitting a radio frequency signal, reduce a cost of a base station system, and reduce a difficulty in implementing the base station system.
Abstract:
A millimeter-wave (mmWave) assembly (1) comprising a first mmWave module (2), a second mmWave module (3), and a connector (4) configured to releasably interconnect the first mmWave module (2) and the second mmWave module (3). The connector (4) comprises a first connector element (5) associated with the first mmWave module (2). The first mmWave module (2) comprises a first substrate (7) and an mmWave radio frequency integrated circuit (RFIC) (8), and the second mmWave module (3) comprises a second substrate (9) and an mmWave antenna array (10). The connector (4) is configured to transmit at least one signal between the mmWave RFIC (8) and the mmWave antenna array (10) when the first mmWave module (2) and the second mmWave module (3) are interconnected.
Abstract:
A millimeter-wave (mmWave) assembly (1) comprising a first mmWave module (2), a second mmWave module (3), and a connector (4) configured to releasably interconnect the first mmWave module (2) and the second mmWave module (3). The connector (4) comprises a first connector element (5) associated with the first mmWave module (2). The first mmWave module (2) comprises a first substrate (7) and an mmWave radio frequency integrated circuit (RFIC) (8), and the second mmWave module (3) comprises a second substrate (9) and an mmWave antenna array (10). The connector (4) is configured to transmit at least one signal between the mmWave RFIC (8) and the mmWave antenna array (10) when the first mmWave module (2) and the second mmWave module (3) are interconnected.
Abstract:
A method for returning a base station signal and a base station for implementing the method. The base station includes a first return unit located in a radio frequency system and a second return unit located in a baseband processing system. The first return unit is configured to perform analog modulation on an uplink analog signal of a first bandwidth to obtain an uplink analog signal of a second bandwidth, and send the uplink analog signal of the second bandwidth to the second return unit, where the second bandwidth is larger than the first bandwidth. The second return unit is configured to receive the uplink analog signal of the second bandwidth, demodulate the uplink analog signal of the second bandwidth to obtain the uplink analog signal of the first bandwidth.
Abstract:
A beam steering antenna structure comprises a stacked antenna module and a first conductive component. The antenna module comprises a first substrate and a second substrate arranged superjacent such that main planes of the substrates extend in parallel. The first substrate comprises a first antenna array transmitting and receiving a first radiation beam. The second substrate comprises a second antenna array transmitting and receiving a second radiation beam. The first conductive component extends adjacent to the antenna module and is at least partially separated from the antenna module in a first direction perpendicular to the main plane of the conductive component. The antenna module is coupled to the conductive component by means of at least one of a galvanic, capacitive, or inductive coupling. At least one of the first and the second radiation beams is at least partially steered away from the other one by the first conductive component.
Abstract:
A beam steering antenna structure comprises a stacked antenna module and a first conductive component. The antenna module comprises a first substrate and a second substrate arranged superjacent such that main planes of the substrates extend in parallel. The first substrate comprises a first antenna array transmitting and receiving a first radiation beam. The second substrate comprises a second antenna array transmitting and receiving a second radiation beam. The first conductive component extends adjacent to the antenna module and is at least partially separated from the antenna module in a first direction perpendicular to the main plane of the conductive component. The antenna module is coupled to the conductive component by means of at least one of a galvanic, capacitive, or inductive coupling. At least one of the first and the second radiation beams is at least partially steered away from the other one by the first conductive component.
Abstract:
A radio frequency signal transceiver includes: a transmission circuit configured to perform power amplification on an input first analog signal, wirelessly transmit the first analog signal after power amplification, and output the first analog signal after power amplification to a pre-distortion circuit; the pre-distortion circuit configured to convert the first analog signal after power amplification into a second analog signal and output the second analog signal, where the second analog signal is used to feedback distortion of the first analog signal to compensate the first analog signal in advance according to the distortion; and a receiving circuit configured to wirelessly receive a third analog signal, and process and output the third analog signal. The radio frequency signal transceiver can improve efficiency in receiving and transmitting a radio frequency signal, reduce a cost of a base station system, and reduce a difficulty in implementing the base station system.
Abstract:
A millimeter-wave (mmWave) assembly (1) comprising a first mmWave module (2), a second mmWave module (3), and a connector (4) configured to releasably interconnect the first mmWave module (2) and the second mmWave module (3). The connector (4) comprises a first connector element (5) associated with the first mmWave module (2). The first mmWave module (2) comprises a first substrate (7) and an mmWave radio frequency integrated circuit (RFIC) (8), and the second mmWave module (3) comprises a second substrate (9) and an mmWave antenna array (10). The connector (4) is configured to transmit at least one signal between the mmWave RFIC (8) and the mmWave antenna array (10) when the first mmWave module (2) and the second mmWave module (3) are interconnected.
Abstract:
A near-eye display and a near-eye display system are provided. The near-eye display includes a display panel, a collimation lens component, and an optical redirector. The display panel includes a plurality of pixels that are disposed in a tiling manner. The collimation lens component includes a plurality of collimation lenses, and the plurality of collimation lenses are in a one-to-one correspondence with the plurality of pixels. Each of the plurality of collimation lenses is configured to: convert, into collimated light, light emitted by a corresponding pixel, and input the collimated light into the optical redirector. The optical redirector includes a plurality of light convergence structures, and the plurality of light convergence structures are in a one-to-one correspondence with the plurality of collimation lenses. Each of the plurality of light convergence structures is configured to converge, on a focus of the near-eye display, collimated light input by a corresponding collimation lens.